Coordinated networks of microRNAs and transcription factors with evolutionary perspectives.

MicroRNAs (miRNAs) and transcription factors (TFs) are two major classes of trans-regulators in gene regulatory networks. Coordination between miRNAs and TFs has been demonstrated by individual studies on developmental processes and the pathogenesis of various cancers. Systematic computational approaches have an advantage in elucidating global network features of the miRNA-TF coordinated regulation. miRNAs and TFs have distinct molecular and evolutionary properties. In particular, miRNA genes have a rapid turnover of birth-and-death processes during evolution, and their effects are widespread but modest. Therefore, miRNAs and TFs are considered to have different contributions to their coordination. The miRNA-TF coordinated feedforward circuits are considered to cause significant increases in redundancy but drastically reduce the target gene repertoire, which poses the question, to what extent is miRNA-TF coordination beneficial? Evolutionary analyses provide wide perspectives on the features of miRNA-TF coordinated regulatory networks at a systems level.

[1]  Albertha J. M. Walhout,et al.  The interplay between transcription factors and microRNAs in genome‐scale regulatory networks , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[2]  Chung-I Wu,et al.  Evolution under canalization and the dual roles of microRNAs: a hypothesis. , 2009, Genome research.

[3]  Manolis Kellis,et al.  Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. , 2007, Genome research.

[4]  Job Harms,et al.  THE LANDSCAPE OF , 2010 .

[5]  Srinka Ghosh,et al.  Biological function of unannotated transcription during the early development of Drosophila melanogaster , 2006, Nature Genetics.

[6]  Bing Su,et al.  Rapid evolution of an X-linked microRNA cluster in primates. , 2007, Genome research.

[7]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[8]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[9]  Xin Li,et al.  A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye , 2005, Cell.

[10]  I. King Jordan,et al.  A Family of Human MicroRNA Genes from Miniature Inverted-Repeat Transposable Elements , 2007, PloS one.

[11]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[12]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[13]  I. K. Jordan,et al.  Origin and Evolution of Human microRNAs From Transposable Elements , 2007, Genetics.

[14]  Guiliang Tang,et al.  MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region , 2004 .

[15]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[16]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  T. Ishida,et al.  Transcriptional double-autorepression feedforward circuits act for multicellularity and nervous system development , 2011, BMC Genomics.

[18]  Wen-Hsiung Li,et al.  Lowly expressed human microRNA genes evolve rapidly. , 2009, Molecular biology and evolution.

[19]  Yitzhak Pilpel,et al.  Global and Local Architecture of the Mammalian microRNA–Transcription Factor Regulatory Network , 2007, PLoS Comput. Biol..

[20]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[21]  M. Nei,et al.  Concerted and birth-and-death evolution of multigene families. , 2005, Annual review of genetics.

[22]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[24]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[25]  E. Levanon,et al.  Human housekeeping genes are compact. , 2003, Trends in genetics : TIG.

[26]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[27]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[28]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[29]  G. Rubin,et al.  Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Yukio Hori,et al.  ReAlignerV: Web-based genomic alignment tool with high specificity and robustness estimated by species-specific insertion sequences , 2008, BMC Bioinformatics.

[31]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[32]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[33]  Jason S. Cumbie,et al.  High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes , 2007, PloS one.

[34]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..

[35]  T. Gojobori,et al.  Highly conserved upstream sequences for transcription factor genes and implications for the regulatory network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[37]  Jian Lu,et al.  Reply to “Evolutionary flux of canonical microRNAs and mirtrons in Drosophila” , 2010, Nature Genetics.

[38]  Peter F Stadler,et al.  Molecular evolution of a microRNA cluster. , 2004, Journal of molecular biology.

[39]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[40]  T. Ishida,et al.  MicroRNA networks alter to conform to transcription factor networks adding redundancy and reducing the repertoire of target genes for coordinated regulation. , 2011, Molecular biology and evolution.

[41]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[42]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[43]  Kevin Kim,et al.  Targets of microRNA regulation in the Drosophila oocyte proteome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Bartel,et al.  Formation, Regulation and Evolution of Caenorhabditis elegans 3′UTRs , 2010, Nature.

[45]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[46]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[47]  Lynn Doucette-Stamm,et al.  A C . elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity , 2008 .

[48]  M. Lynch The evolution of genetic networks by non-adaptive processes , 2007, Nature Reviews Genetics.

[49]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[50]  G. Hannon,et al.  Evolutionary flux of canonical microRNAs and mirtrons in Drosophila , 2010, Nature Genetics.

[51]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[52]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[53]  Zhaolei Zhang,et al.  Evolution of an X-linked primate-specific micro RNA cluster. , 2010, Molecular biology and evolution.

[54]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[55]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[56]  T. Masaki,et al.  Abundance of microRNA target motifs in the 3′‐UTRs of 20 527 human genes , 2007, FEBS letters.

[57]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[58]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[59]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[60]  Sarah A. Teichmann,et al.  DBD: a transcription factor prediction database , 2005, Nucleic Acids Res..

[61]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[62]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[63]  I. K. Jordan,et al.  Dual coding of siRNAs and miRNAs by plant transposable elements. , 2008, RNA.

[64]  Kai Zeng,et al.  Adaptive evolution of newly emerged micro-RNA genes in Drosophila. , 2008, Molecular biology and evolution.

[65]  Gi-Ho Sung,et al.  Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana , 2004, Nature Genetics.

[66]  Michael T. McManus,et al.  The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development , 2005, Nature.

[67]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[68]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[69]  Edgar Wingender,et al.  The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation , 2008, Briefings Bioinform..

[70]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[71]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[72]  Jessica Treisman,et al.  The Conserved microRNA MiR-8 Tunes Atrophin Levels to Prevent Neurodegeneration in Drosophila , 2007, Cell.

[73]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[74]  Jian Lu,et al.  The birth and death of microRNA genes in Drosophila , 2008, Nature Genetics.

[75]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[76]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[77]  J. Lieberman,et al.  Desperately seeking microRNA targets , 2010, Nature Structural &Molecular Biology.

[78]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[79]  Emile Zuckerkandl,et al.  Neutral and Nonneutral Mutations: The Creative Mix—Evolution of Complexity in Gene Interaction Systems , 1997, Journal of Molecular Evolution.

[80]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[81]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[82]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[83]  D. Zack,et al.  Analysis of regulatory network topology reveals functionally distinct classes of microRNAs , 2008, Nucleic acids research.

[84]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[85]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[86]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[87]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[88]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[89]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[90]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[91]  Ranit Aharonov,et al.  MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. , 2004, Genome research.

[92]  Sebastian D. Mackowiak,et al.  The Landscape of C. elegans 3′UTRs , 2010, Science.

[93]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[94]  Ole Winther,et al.  JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update , 2007, Nucleic Acids Res..

[95]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[96]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[97]  Angela N. Brooks,et al.  Structural Basis for Double-Stranded RNA Processing by Dicer , 2006, Science.

[98]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[99]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[100]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[101]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[102]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[103]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[104]  Jennifer McDowall,et al.  InterPro protein classification. , 2011, Methods in molecular biology.

[105]  Christian A. Grove,et al.  A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks , 2005, Genome Biology.

[106]  V. Ambros,et al.  The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans. , 2008, Genes & development.

[107]  Christian A. Grove,et al.  A Gene-Centered C. elegans Protein-DNA Interaction Network , 2006, Cell.

[108]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[110]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[111]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[112]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[113]  Albert-László Barabási,et al.  Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. , 2007, Genome research.

[114]  Peter C. Hollenhorst,et al.  Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. , 2007, Genes & development.

[115]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.