Semi-automatic medical image segmentation

We present a system for semi-automatic medical image segmentation based on the livewire paradigm. Livewire is an image-feature driven method that finds the optimal path between user-selected image locations, thus reducing the need to manually define the complete boundary. Standard features used by the wire to find boundaries include gray values and gradients. We introduce an image feature based on local phase, which describes local edge symmetry independent of absolute gray value. Because phase is amplitude invariant, the measurements are robust with respect to smooth variations, such as bias field inhomogeneities present in all MR images. We have implemented both a traditional livewire system and one which utilizes the local phase feature. We have investigated the properties of local phase for segmenting medical images and evaluated the quality of segmentations of medical imagery performed manually and with both systems. Thesis Supervisor: W. Eric L. Grimson Title: Bernard Gordon Professor of Medical Engineering Thesis Supervisor: Carl-Fredrik Westin Title: Instructor in Radiology, Harvard Medical School

[1]  William A. Barrett,et al.  Interactive live-wire boundary extraction , 1997, Medical Image Anal..

[2]  Olivier D. Faugeras,et al.  Co-dimension 2 Geodesic Active Contours for MRA Segmentation , 1999, IPMI.

[3]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[4]  Carl-Fredrik Westin,et al.  Affine adaptive filtering of CT data , 2000, Medical Image Anal..

[5]  Ron Kikinis,et al.  Adaptive Template Moderated Brain Tumor Segmentation in MRI , 1999, Bildverarbeitung für die Medizin.

[6]  Carl-Johan Westelius,et al.  Focus of attention and gaze control for robot vision , 1995 .

[7]  Michael E. Leventon,et al.  Statistical models in medical image analysis , 2000 .

[8]  David J. Fleet,et al.  Stability of phase information , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[9]  R. Kikinis,et al.  Automated segmentation of MR images of brain tumors. , 2001, Radiology.

[10]  Demetri Terzopoulos,et al.  Interactive Medical Image Segmentation with United Snakes , 1999, MICCAI.

[11]  W. Eric L. Grimson,et al.  Phase-Based User-Steered Image Segmentation , 2001, MICCAI.

[12]  Tina Kapur,et al.  Model based three dimensional medical image segmentation , 1999 .

[13]  W. Eric L. Grimson,et al.  An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and Interventional Imaging , 1999, MICCAI.

[14]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[15]  W. Eric L. Grimson,et al.  Small Sample Size Learning for Shape Analysis of Anatomical Structures , 2000, MICCAI.

[16]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[17]  Carl-Fredrik Westin,et al.  Local multiscale frequency and bandwidth estimation , 1994, Proceedings of 1st International Conference on Image Processing.

[18]  N. Hata,et al.  An integrated visualization system for surgical planning and guidance using image fusion and an open MR , 2001, Journal of magnetic resonance imaging : JMRI.

[19]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[20]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[21]  Carl-Fredrik Westin,et al.  Tensor Controlled Local Structure Enhancement of CT Images for Bone Segmentation , 1998, MICCAI.

[22]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[23]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[24]  Jayaram K. Udupa,et al.  User-Steered Image Segmentation Paradigms: Live Wire and Live Lane , 1998, Graph. Model. Image Process..

[25]  Jayaram K. Udupa,et al.  An ultra-fast user-steered image segmentation paradigm: live wire on the fly , 2000, IEEE Transactions on Medical Imaging.

[26]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[27]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[28]  Kemal Tuncali,et al.  Intraoperative Segmentation and Nonrigid Registration for Image Guided Therapy , 2000, MICCAI.

[29]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[30]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[31]  Hans Knutsson,et al.  On Phase Representation of Image Information , 1989 .

[32]  No Value,et al.  IEEE International Conference on Image Processing , 2003 .

[33]  R. McCarley,et al.  MRI anatomy of schizophrenia , 1999, Biological Psychiatry.

[34]  Ron Kikinis,et al.  Adaptive, template moderated, spatially varying statistical classification , 2000, Medical Image Anal..