Features in optimality theory: A computational model

This dissertation presents a computational model of Optimality Theory (OT) (Prince and Smolensky 1993). The model provides an efficient solution to the problem of candidate generation and evaluation, and is demonstrated for the realm of phonological features. Explicit object-oriented implementations are proposed for autosegmental representations (Goldsmith 1976 and many others) and violable OT constraints and Gen operations on autosegmental representations. Previous computational models of OT (Ellison 1995, Tesar 1995, Eisner 1997, Hammond 1997, Karttunen 1998) have not dealt in depth with autosegmental representations. The proposed model provides a full treatment of autosegmental representations and constraints on autosegmental representations (Akinlabi 1996, Archangeli and Pulleyblank 1994, Itô, Mester, and Padgett 1995, Kirchner 1993, Padgett 1995, Pulleyblank 1993, 1996, 1998). Implementing Gen, the candidate generation component of OT, is a seemingly intractable problem. Gen in principle performs unlimited insertion; therefore, it may produce an infinite candidate set. For autosegmental representations, however, it is not necessary to think of Gen as infinite. The Obligatory Contour Principle (Leben 1973, McCarthy 1979, 1986) restricts the number of tokens of any one feature type in a single representation; hence, Gen for autosegmental features is finite.

[1]  Bruce Tesar,et al.  Computational optimality theory , 1996 .

[2]  Lauri Karttunen,et al.  The Proper Treatment of Optimality in Computational Phonology , 1998, ArXiv.

[3]  Giorgio Satta,et al.  Optimality Theory and the Generative Complexity of Constraint Violability , 1998, CL.

[4]  Bruce Tesar,et al.  Robust Interpretive Parsing in Metrical Stress Theory , 1998 .

[5]  William Raymond,et al.  A Users Guide to the Optimality Interpreter: A Software Tool for Optimality Theoretic Analysis ; CU-CS-734-94 , 1994 .

[6]  Alan Prince,et al.  Prosodic morphology : constraint interaction and satisfaction , 1993 .

[7]  Charles Kisseberth,et al.  An Optimal Domains Theory of Harmony , 1994 .

[8]  R. Kager,et al.  The prosody-morphology interface: The Prosody-Morphology Interface , 1999 .

[9]  Lee S. Bickmore Bantu Tone spreading and displacement as alignment and minimal misalignment , 1996 .

[10]  J. McCarthy OCP effects: Gemination and antigemination , 1986 .

[11]  John Goldsmith,et al.  Autosegmental Studies in Bantu Tone , 1984 .

[12]  Darrel C. Ince,et al.  An introduction to discrete mathematics , 1988 .

[13]  Alan S. Prince,et al.  Generalized alignment , 1993 .

[14]  J. McCarthy Feature Geometry and Dependency: A Review , 1988 .

[15]  Michael Hammond,et al.  Parsing in Ot * , 2022 .

[16]  Douglas Pulleyblank Tone in Lexical Phonology , 1986 .

[17]  Steven Bird,et al.  Computational phonology: A constraint-based approach , 1995, CL.

[18]  Udi Manber,et al.  Introduction to algorithms - a creative approach , 1989 .

[19]  Alan S. Prince,et al.  Faithfulness and reduplicative identity , 1995 .

[20]  Noam Chomsky,et al.  The Sound Pattern of English , 1968 .

[21]  Bruce J. MacLennan,et al.  Principles of Programming Languages , 1983 .

[22]  Robert Kirchner,et al.  Turkish Vowel Harmony and Disharmony: An Optimality Theoretic Account , 1993 .

[23]  Jaye Padgett,et al.  Markedness , Segment Realisation , and Locality in Spreading * , 1997 .

[24]  T. Mark Ellison,et al.  Phonological Derivation in Optimality Theory , 1994, COLING.

[25]  Ping Jiang-King,et al.  An optimality account of tone-vowel interaction in Northern Min , 1996 .

[26]  John J. McCarthy,et al.  Process-specific constraints in Optimality Theory , 1997 .

[27]  B. Hayes A metrical theory of stress rules , 1980 .

[28]  Bruce P. Hayes Compensatory Lengthening in Moraic Phonology , 1989 .

[29]  Douglas Pulleyblank,et al.  YORUBA VOWEL PATTERNS: DERIVING ASYMMETRIES BY THE TENSION BETWEEN OPPOSING CONSTRAINTS , 1998 .

[30]  Steven Bird,et al.  Phonology , 2002, A Grammar of Patwin.

[31]  Junko Ito,et al.  Licensing and underspecification in optimality theory , 1995 .

[32]  Bruce J. MacLennan Principles of programming languages - design, evaluation, and implementation , 1987 .

[33]  B. Hayes Metrical Stress Theory: Principles and Case Studies , 1995 .

[34]  James M. Scobbie,et al.  Attribute value phonology , 1991 .

[35]  Jason Eisner,et al.  Eecient Generation in Primitive Optimality Theory , 1997 .

[36]  Henrietta J. Hung,et al.  The rhythmic and prosodic organization of edge constituents , 1994 .

[37]  Elisabeth Selkirk,et al.  Phonology and Syntax: The Relation between Sound and Structure , 1984 .

[38]  Junko Ito,et al.  A prosodic theory of epenthesis , 1989 .

[39]  John J. McCarthy,et al.  Formal Problems in Semitic Phonology and Morphology , 2018 .

[40]  John Coleman,et al.  The “no crossing constraint” in autosegmental phonology , 1991 .

[41]  Alan Prince,et al.  Foot and word in prosodic morphology: The Arabic broken plural , 1990 .

[42]  Scott Myers,et al.  Tone and the structure of words in Shona , 1987 .

[43]  Larry M. Hyman A theory of phonological weight , 1985 .

[44]  Richard M. Saenz,et al.  University of Massachusetts occasional papers in linguistics , 1976 .

[45]  Keiichiro Suzuki,et al.  A typological investigation of dissimilation , 1998 .

[46]  George F. Luger,et al.  Artificial Intelligence and the Design of Expert Systems , 1990 .

[47]  Steven Bird,et al.  One-Level Phonology: Autosegmental Representations and Rules as Finite Automata , 1994, Comput. Linguistics.

[48]  George N. Clements,et al.  The geometry of phonological features , 1985, Phonology Yearbook.

[49]  Michael Hammond,et al.  Syllable parsing in English and French , 1995, ArXiv.

[50]  Richard Wiese,et al.  Zero morphology and constraint interaction: subtraction and epenthesis in German dialects , 1996 .

[51]  Alan S. Prince,et al.  The emergence of the unmarked: Optimality in prosodic morphology , 1994 .

[52]  J. Goldsmith Autosegmental and Metrical Phonology , 1990 .

[53]  J. McCarthy Extensions of faithfulness: Rotuman revisited , 1995 .

[54]  Markus Walther,et al.  OT SIMPLE - a construction-kit approach to Optimality Theory implementation , 1996, ArXiv.

[55]  Jaye Padgett,et al.  Feature Classes* , 1995 .

[56]  Alan S. Prince,et al.  Prosodic Morphology 1986 , 1996 .

[57]  Akinbiyi Akinlabi,et al.  Featural affixation , 1996, Journal of Linguistics.

[58]  Harry van der Hulst,et al.  The Structure of phonological representations , 1982 .

[59]  Bruce Tesar,et al.  Computing Optimal Forms in Optimality Theory: Basic Syllabification ; CU-CS-763-95 , 2008 .

[60]  A. Kaun,et al.  The Typology of Rounding Harmony: An Optimality Theoretic Approach , 1995 .

[61]  M. Hale,et al.  Grammar Optimization: the Simultaneous Acquisition of Constraint Ranking and a Lexicon , 1997 .

[62]  Michael Hammond,et al.  On deriving the well-formedness condition , 1988 .

[63]  William R. Leben,et al.  The Representation of Tone , 1978 .

[64]  G. N. Clements,et al.  On the phonological status of downstep in Kikuyu , 1981 .

[66]  Ewan Klein,et al.  Phonological Analysis in Typed Feature Systems , 1994, CL.

[67]  Ewan Klein,et al.  Phonological events , 1990, Journal of Linguistics.

[68]  Sung-Hoon Hong Issues in round harmony: Grounding, identity and their interaction. , 1994 .

[69]  Douglas Pulleyblank,et al.  Neutral Vowels in Optimality Theory: A Comparison of Yoruba and Wolof , 1996, Canadian Journal of Linguistics/Revue canadienne de linguistique.

[70]  G. Clements Vowel and Consonant Disharmony in Turkish , 1982 .

[71]  Alan S. Prince,et al.  Faithfulness and Identity in Prosodic Morphology , 1999 .

[72]  Moira Yip,et al.  Repetition and its Avoidance: The Case in Javanese , 1995 .

[73]  Elizabeth Caroline Sagey,et al.  The representation of features and relations in non-linear phonology , 1986 .

[74]  Scott Meyers,et al.  Ocp Effects in Optimality Theory , 1997 .

[75]  Abraham Kandel,et al.  Discrete mathematics for computer scientists , 1983 .