Formulations of Support Vector Machines: A Note from an Optimization Point of View
暂无分享,去创建一个
[1] V. Barbu,et al. Convexity and optimization in banach spaces , 1972 .
[2] B. T. Poljak,et al. Lectures on mathematical theory of extremum problems , 1972 .
[3] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[4] J. Herod. Introduction to Hilbert spaces with applications , 1990 .
[5] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[6] O. Mangasarian,et al. Robust linear programming discrimination of two linearly inseparable sets , 1992 .
[7] Emilio Spedicato,et al. Algorithms for Continuous Optimization , 1994 .
[8] G. Di Pillo,et al. Exact Penalty Methods , 1994 .
[9] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[10] Nello Cristianini,et al. The Kernel-Adatron Algorithm: A Fast and Simple Learning Procedure for Support Vector Machines , 1998, ICML.
[11] B. Schölkopf,et al. Advances in kernel methods: support vector learning , 1999 .
[12] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[13] Bernhard Schölkopf,et al. New Support Vector Algorithms , 2000, Neural Computation.
[14] Chih-Jen Lin,et al. Training v-Support Vector Classifiers: Theory and Algorithms , 2001, Neural Computation.
[15] M. Kantardzic,et al. A data-mining approach to improving polycythemia vera diagnosis , 2002 .
[16] Jiun-Hung Chen,et al. Fuzzy kernel perceptron , 2002, IEEE Trans. Neural Networks.