Overview of the Alcator C-Mod Research Program

Alcator C-MOD has compared plasma performance with plasma-facing components (PFCs) coated with boron to all-metal PFCs to assess projections of energy confinement from current experiments to next-generation burning tokamak plasmas. Low-Z coatings reduce metallic impurity influx and diminish radiative losses leading to higher H-mode pedestal pressure that improves global energy confinement through profile stiffness. RF sheath rectification along flux tubes that intersect the RF antenna is found to be a major cause of localized boron erosion and impurity generation. Initial lower hybrid current drive (LHCD) experiments (PLH < 900?kW) in preparation for future advanced-tokamak studies have demonstrated fully non-inductive current drive at Ip ~ 1.0?MA with good efficiency, Idrive = 0.4 PLH/neoR (MA, MW, 1020?m?3,m). The potential to mitigate disruptions in ITER through massive gas-jet impurity puffing has been extended to significantly higher plasma pressures and shorter disruption times. The fraction of total plasma energy radiated increases with the Z of the impurity gas, reaching 90% for krypton. A positive major-radius scaling of the error field threshold for locked modes (Bth/B ? R0.68?0.19) is inferred from its measured variation with BT that implies a favourable threshold value for ITER. A phase contrast imaging diagnostic has been used to study the structure of Alfv?n cascades and turbulent density fluctuations in plasmas with an internal transport barrier. Understanding the mechanisms responsible for regulating the H-mode pedestal height is also crucial for projecting performance in ITER. Modelling of H-mode edge fuelling indicates high self-screening to neutrals in the pedestal and scrape-off layer (SOL), and reproduces experimental density pedestal response to changes in neutral source, including a weak variation of pedestal height and constant width. Pressure gradients in the near SOL of Ohmic L-mode plasmas are observed to scale consistently as , and show a significant dependence on X-point topology. Fast camera images of intermittent turbulent structures at the plasma edge show they travel coherently through the SOL with a broad radial velocity distribution having a peak at about 1% of the ion sound speed, in qualitative agreement with theoretical models. Fast D? diagnostics during gas puff imaging show a complex behaviour of discrete ELMs, starting with an n ? 10 precursor oscillation followed by a rapid primary ejection as the pedestal crashes and then multiple, slower secondary ejections.

[1]  J. Rice,et al.  Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas. , 2008, Physical review letters.

[2]  P. C. Stangeby,et al.  Comparison of H-mode barrier width with a model of neutral penetration length , 2004 .

[3]  M. Greenwald,et al.  Evidence for electromagnetic fluid drift turbulence controlling the edge plasma state in the Alcator C-Mod tokamak , 2005 .

[4]  G. Oost,et al.  Experimental evidence for sheath effects at the ICRF antenna and ensuing changes in the plasma boundary during ICRF on textor , 1989 .

[5]  B. Lipschultz,et al.  Dynamics of hydrogenic retention in molybdenum: First results from DIONISOS , 2007 .

[6]  M. Rosenbluth,et al.  Theory for avalanche of runaway electrons in tokamaks , 1997 .

[7]  P. T. Bonoli,et al.  Double transport barrier plasmas in Alcator C-Mod , 2002 .

[8]  Swee-Ping Chia,et al.  AIP Conference Proceedings , 2008 .

[9]  Sylvain Brémond,et al.  RF-sheath physics assessment of Tore Supra ICRF antenna designs , 2002 .

[10]  R J Bickerton,et al.  The Joint European Torus: installation, first results and prospects , 1985 .

[11]  Ambrogio Fasoli,et al.  MHD Spectroscopy through Detecting Toroidal Alfvén Eigenmodes and Alfvén Wave Cascades , 2001 .

[12]  W. Treutterer,et al.  Type II ELMy H modes on ASDEX Upgrade with good confinement at high density , 2001 .

[13]  J. T. Scoville,et al.  Nonaxisymmetric field effects on Alcator C-Moda) , 2005 .

[14]  John E Liptac,et al.  Lower hybrid modeling and experiments on Alcator C-Mod , 2006 .

[15]  G. Giruzzi,et al.  MEASUREMENT OF THE HOT ELECTRICAL CONDUCTIVITY IN THE PBX-M TOKAMAK , 1997 .

[16]  E D'Azevedo,et al.  Sheared poloidal flow driven by mode conversion in tokamak plasmas. , 2003, Physical review letters.

[17]  F. Wagner,et al.  Experimental evidence for neoclassical ion transport effects in the H-transition of ASDEX , 1985 .

[18]  D. D'Ippolito,et al.  Edge instability regimes with applications to blob transport and the quasicoherent mode , 2005 .

[19]  B. Lipschultz,et al.  RF-Plasma Edge Interactions and their Impact on ICRF Antenna Performance in Alcator C-Mod , 2007 .

[20]  B. Lipschultz Operation of Alcator C-Mod with high-Z plasma facing components and implications , 2005 .

[21]  M. Groth,et al.  Tritium recycling and retention in JET , 1999 .

[22]  Shuichi Takamura,et al.  Chapter 4: Power and particle control , 2007 .

[23]  M. Porkolab,et al.  Phase contrast imaging of waves and instabilities in high temperature magnetized fusion plasmas , 2006, IEEE Transactions on Plasma Science.

[24]  D G Whyte,et al.  Mitigation of tokamak disruptions using high-pressure gas injection. , 2002, Physical review letters.

[25]  B. Lipschultz,et al.  Influence of boronization on operation with high-Z plasma facing components in Alcator C-Mod , 2007 .

[26]  F. Leuterer,et al.  LHCD Coupling During H-Mode and ITB in JET Plasmas , 2001 .

[27]  T. Petrie,et al.  Transport of edge localized modes energy and particles into the scrape off layer and divertor of DIII-D , 2003 .

[28]  L. C. Woods Physics of plasmas , 2003 .

[29]  S. J. Wukitch,et al.  Lower hybrid current drive experiments on Alcator C-Mod : Comparison with theory and simulation , 2007 .

[30]  J. Stober,et al.  H-mode power threshold and transition in ASDEX Upgrade , 1998 .

[31]  R. L. Haye,et al.  Error field mode studies on JET, COMPASS-D and DIII-D, and implications for ITER , 1999 .

[32]  Richard Majeski,et al.  Secondary electron emission‐capacitive probes for plasma potential measurements in plasmas with hot electrons , 1987 .

[33]  J. Jacquinot,et al.  A model of sheath-driven impurity production by ICRF antennas , 1991 .

[34]  P. T. Bonoli,et al.  Toroidal rotation and momentum transport in Alcator C-Mod plasmas with no momentum input , 2004 .

[35]  J. Rice,et al.  Observations of impurity toroidal rotation suppression with ITB formation in ICRF and ohmic H mode Alcator C-Mod plasmas , 2001 .

[36]  E. D'Azevedo,et al.  Simulation of high-power electromagnetic wave heating in the ITER burning plasma , 2008 .

[37]  M. Brambilla,et al.  Slow-wave launching at the lower hybrid frequency using a phased waveguide array , 1976 .

[38]  J. W. Connor,et al.  Scaling laws for plasma confinement , 1977 .

[39]  P. T. Bonoli,et al.  First results from Alcator‐C‐MOD* , 1994 .

[40]  P. T. Bonoli,et al.  Role of trapped electron mode turbulence in internal transport barrier control in the Alcator C-Mod Tokamak , 2004 .

[41]  J. Rice,et al.  Double transport barrier experiments on Alcator C-Mod , 2002 .

[42]  O. E. Garcia,et al.  Mechanism and scaling for convection of isolated structures in nonuniformly magnetized plasmas , 2005 .

[43]  J. G. Cordey,et al.  A two-term model of the confinement in Elmy H-modes using the global confinement and pedestal databases , 2003 .

[44]  A. Polevoi,et al.  Chapter 1: Overview and summary , 2007 .

[45]  K. Sugiyama,et al.  Comparison of tritium retention and carbon deposition in JET and JT-60U , 2005 .

[46]  S. J. Wukitch,et al.  Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Mod , 2005 .

[47]  Martin Jakobi,et al.  Transport into and across the scrape-off layer in the ASDEX Upgrade divertor tokamak , 2002 .

[48]  L. L. Lao,et al.  Advances in understanding quiescent H-mode plasmas in DIII-D , 2005 .

[49]  Brian Labombard,et al.  Advances in measurement and modeling of the high-confinement-mode pedestal on the Alcator C-Mod tokamak , 2006 .

[50]  S. G. Lee,et al.  Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited). , 2008, The Review of scientific instruments.

[51]  T.K. Fowler,et al.  Nuclear fusion , 1989, IEEE Potentials.

[52]  S. Zweben,et al.  Radially propagating fluctuation structures in the scrape-off layer of Alcator C-Mod , 2006 .

[53]  S. J. Wukitch,et al.  H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Mod , 2006 .

[54]  M Porkolab,et al.  Experimental observations of mode-converted ion cyclotron waves in a tokamak plasma by phase contrast imaging. , 2003, Physical review letters.

[55]  I. Hutchinson,et al.  Two dimensional radiated power diagnostics on Alcator C-Mod. , 2006, The Review of scientific instruments.

[56]  Brian Labombard,et al.  Observations and empirical scalings of the high-confinement mode pedestal on Alcator C-Mod , 2002 .

[57]  W. Wampler,et al.  Tritium retention and removal on TFTR , 1997, 17th IEEE/NPSS Symposium Fusion Engineering (Cat. No.97CH36131).

[58]  D. Russell,et al.  Nonlinear ICRF-plasma interactions , 2005 .

[59]  F. W. Perkins,et al.  Radiofrequency sheaths and impurity generation by ICRF antennas , 1989 .

[60]  M. Sugihara,et al.  ITER edge database investigations of the SOL width , 1999 .

[61]  D. P. Coster,et al.  ASDEX-Upgrade edge transport scalings from the two-dimensional interpretative code B2.5-I , 2001 .

[62]  Brian Labombard,et al.  Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma , 2004 .

[63]  T. Fujita,et al.  Alfvén eigenmodes in reversed shear plasmas in JT-60U negative-ion-based neutral beam injection discharges , 2005 .

[64]  D. Whyte,et al.  Toroidally resolved radiation dynamics during a gas jet mitigated disruption on Alcator C-Mod , 2008 .

[65]  D. A. Humphreys,et al.  Gas jet disruption mitigation studies on Alcator C-Mod , 2005 .

[66]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[67]  R. Marchand,et al.  Finite element modelling of transport in a tokamak edge and divertor , 2002 .

[68]  A. Loarte,et al.  Scaling laws for edge plasma parameters in ITER from two-dimensional edge modelling , 2003 .

[69]  J. Jacquinot,et al.  Impurity release from the ICRF antenna screens in JET , 1991 .

[70]  M. Greenwald,et al.  The operational phase-space of the edge plasma and its sensitivity to magnetic topology in Alcator C-Mod , 2007 .

[71]  F. W. Perkins,et al.  Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances , 1977 .

[72]  Joachim Roth,et al.  Tritium inventory in ITER plasma-facing materials and tritium removal procedures , 2008 .

[73]  P. T. Bonoli,et al.  Central impurity toroidal rotation in ICRF heated Alcator C-Mod plasmas , 1999 .

[74]  L. L. Lao,et al.  Magnetohydrodynamic simulations of massive gas injection into Alcator C-Mod and DIII-D plasmasa) , 2008 .

[75]  E. D. Fredrickson,et al.  ICRF heating and profile control techniques in TFTR , 2000 .

[76]  K. McClements,et al.  Improved H-mode access in connected DND in MAST , 2005 .

[77]  W. Wampler,et al.  Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons , 1998 .

[78]  M. Chance,et al.  Nova: a nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas , 1987 .

[79]  R. Granetz Gas Jet Disruption Mitigation Studies on Alcator C-Mod , 2005 .

[80]  T. Eich,et al.  Filament structures at the plasma edge on MAST , 2006 .

[81]  P. T. Bonoli,et al.  Characterization of enhanced Dα high-confinement modes in Alcator C-Mod , 1999 .