Computational approaches for characterizing the tumor immune microenvironment

Recent advances in high‐throughput molecular profiling technologies and multiplexed imaging platforms have revolutionized our ability to characterize the tumor immune microenvironment. As a result, studies of tumor‐associated immune cells increasingly involve complex data sets that require sophisticated methods of computational analysis. In this review, we present an overview of key assays and related bioinformatics tools for analyzing the tumor‐associated immune system in bulk tissues and at the single‐cell level. In parallel, we describe how data science strategies and novel technologies have advanced tumor immunology and opened the door for new opportunities to exploit host immunity to improve cancer clinical outcomes.

[1]  Clemencia Pinilla,et al.  Derivation of an amino acid similarity matrix for peptide:MHC binding and its application as a Bayesian prior , 2009, BMC Bioinformatics.

[2]  Salil S. Bhate,et al.  Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging , 2017, Cell.

[3]  Mark D. Robinson,et al.  Statistical methods for detecting differentially methylated loci and regions , 2014, Front. Genet..

[4]  Sandra Andorf,et al.  MetaCyto: A Tool for Automated Meta-analysis of Mass and Flow Cytometry Data. , 2018, Cell reports.

[5]  Wei Lu,et al.  Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration , 2017, bioRxiv.

[6]  Morten Nielsen,et al.  NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11 , 2008, Nucleic Acids Res..

[7]  Sean C. Bendall,et al.  Wishbone identifies bifurcating developmental trajectories from single-cell data , 2016, Nature Biotechnology.

[8]  O. Stegle,et al.  Single-cell epigenomics: Recording the past and predicting the future , 2017, Science.

[9]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[10]  Michele A. Busby,et al.  Supplementary Materials for Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification , 2018 .

[11]  Drew M. Pardoll,et al.  The blockade of immune checkpoints in cancer immunotherapy , 2012, Nature Reviews Cancer.

[12]  J. Bodmer,et al.  IMGT/HLA Database - a sequence database for the human major histocompatibility complex , 2000, Nucleic Acids Res..

[13]  Mikhail Shugay,et al.  MiXCR: software for comprehensive adaptive immunity profiling , 2015, Nature Methods.

[14]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[15]  Christina S. Leslie,et al.  Chromatin states define tumor-specific T cell dysfunction and reprogramming , 2017, Nature.

[16]  Jingde Zhu,et al.  Whole-genome DNA methylation profiling using MethylCap-seq. , 2010, Methods.

[17]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[18]  Anneliese O. Speak,et al.  T cell fate and clonality inference from single cell transcriptomes , 2016, Nature Methods.

[19]  Vladimir Brusic,et al.  Dana-Farber repository for machine learning in immunology. , 2011, Journal of immunological methods.

[20]  R. Satija,et al.  Single-cell RNA sequencing to explore immune cell heterogeneity , 2017, Nature Reviews Immunology.

[21]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[22]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[23]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[24]  Ignacio J. Tripodi,et al.  Detecting Differential Transcription Factor Activity from ATAC-Seq Data , 2018, bioRxiv.

[25]  M. Nielsen,et al.  NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets , 2016, Genome Medicine.

[26]  Peter A. Jones,et al.  Epigenetics in cancer. , 2010, Carcinogenesis.

[27]  Kumardeep Chaudhary,et al.  Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer , 2017, Clinical Cancer Research.

[28]  Ting Wang,et al.  The Different T-cell Receptor Repertoires in Breast Cancer Tumors, Draining Lymph Nodes, and Adjacent Tissues , 2016, Cancer Immunology Research.

[29]  H. Schreiber,et al.  Innate and adaptive immune cells in the tumor microenvironment , 2013, Nature Immunology.

[30]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[31]  Mauricio Barahona,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[32]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[33]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[34]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[35]  Francine E. Garrett-Bakelman,et al.  methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles , 2012, Genome Biology.

[36]  C. Mackall,et al.  CAR T cell therapy: inroads to response and resistance , 2019, Nature Reviews Immunology.

[37]  Russell B. Fletcher,et al.  Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics , 2017, BMC Genomics.

[38]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[39]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[41]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[42]  Greg Finak,et al.  Critical assessment of automated flow cytometry data analysis techniques , 2013, Nature Methods.

[43]  Chen Xu,et al.  Identification of cell types from single-cell transcriptomes using a novel clustering method , 2015, Bioinform..

[44]  Wei Vivian Li,et al.  An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.

[45]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[46]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[47]  Sean C. Bendall,et al.  A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging , 2018, Cell.

[48]  Morten Nielsen,et al.  Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification , 2015, Immunogenetics.

[49]  Alessandro Sette,et al.  Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method , 2005, BMC Bioinformatics.

[50]  Enrico Macii,et al.  Automated segmentation of tissue images for computerized IHC analysis , 2022 .

[51]  Alessandro Sette,et al.  Identifying specificity groups in the T cell receptor repertoire , 2017, Nature.

[52]  R. Tibshirani,et al.  Automated identification of stratifying signatures in cellular subpopulations , 2014, Proceedings of the National Academy of Sciences.

[53]  D. Speiser,et al.  Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data , 2017, bioRxiv.

[54]  B. Horsthemke,et al.  Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma , 1989, Human Genetics.

[55]  J. Lee,et al.  Single-cell RNA sequencing technologies and bioinformatics pipelines , 2018, Experimental & Molecular Medicine.

[56]  Jeffrey W Pollard,et al.  Tumor-associated macrophages: from mechanisms to therapy. , 2014, Immunity.

[57]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[58]  Eran Bacharach,et al.  Cell composition analysis of bulk genomics using single cell data , 2019, Nature Methods.

[59]  B. Langmead,et al.  BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions , 2012, Genome Biology.

[60]  Patrick Wilson,et al.  iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences , 2007, Bioinform..

[61]  Sean C. Bendall,et al.  Multiplexed ion beam imaging of human breast tumors , 2014, Nature Medicine.

[62]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[63]  A. van Oudenaarden,et al.  Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations , 2017, Nature Methods.

[64]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[65]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[66]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[67]  Abigail K Kimball,et al.  A Beginner’s Guide to Analyzing and Visualizing Mass Cytometry Data , 2018, The Journal of Immunology.

[68]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods: towards more accurate and robust tools , 2018, bioRxiv.

[69]  R. Emerson,et al.  High‐throughput sequencing of T‐cell receptors reveals a homogeneous repertoire of tumour‐infiltrating lymphocytes in ovarian cancer , 2013, The Journal of pathology.

[70]  T. Chan,et al.  Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab , 2017, Cell.

[71]  Hongkai Ji,et al.  TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis , 2016, Nucleic acids research.

[72]  Morten Nielsen,et al.  NetTepi: an integrated method for the prediction of T cell epitopes , 2014, Immunogenetics.

[73]  G. Nolan,et al.  Automated Mapping of Phenotype Space with Single-Cell Data , 2016, Nature Methods.

[74]  Piet Demeester,et al.  FlowSOM: Using self‐organizing maps for visualization and interpretation of cytometry data , 2015, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[75]  Sean C. Bendall,et al.  viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.

[76]  P. Allavena,et al.  Cancer-related inflammation , 2008, Nature.

[77]  Jinghua Wu,et al.  History, applications, and challenges of immune repertoire research , 2018, Cell Biology and Toxicology.

[78]  Ash A. Alizadeh,et al.  Determining cell-type abundance and expression from bulk tissues with digital cytometry , 2019, Nature Biotechnology.

[79]  E. Mardis,et al.  pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens , 2016, Genome Medicine.

[80]  F. Luciani,et al.  Linking the T cell receptor to the single cell transcriptome in antigen‐specific human T cells , 2016, Immunology and cell biology.

[81]  Steven J. M. Jones,et al.  The Immune Landscape of Cancer , 2018, Immunity.

[82]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[83]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[84]  Ning Ma,et al.  IgBLAST: an immunoglobulin variable domain sequence analysis tool , 2013, Nucleic Acids Res..

[85]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[86]  A Cornucopia of Advances in Human Epigenomics , 2016, Cell.

[87]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[88]  Shiqi Tu,et al.  An introduction to computational tools for differential binding analysis with ChIP-seq data , 2017, Quantitative Biology.

[89]  Nancy R. Zhang,et al.  SAVER: Gene expression recovery for single-cell RNA sequencing , 2018, Nature Methods.

[90]  Jun S. Liu,et al.  Comprehensive analyses of tumor immunity: implications for cancer immunotherapy , 2016, Genome Biology.

[91]  Joonsoo Kang,et al.  Immunological Genome Project and systems immunology. , 2013, Trends in immunology.

[92]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[93]  Euan A. Ashley,et al.  Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments , 2016, PLoS Comput. Biol..

[94]  Olivier Elemento,et al.  Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq , 2016, Genome Medicine.

[95]  Yongseok Park,et al.  MethylSig: a whole genome DNA methylation analysis pipeline , 2014, Bioinform..

[96]  S. Rosenberg,et al.  Adoptive cell transfer: a clinical path to effective cancer immunotherapy , 2008, Nature Reviews Cancer.

[97]  Antoni Ribas,et al.  Improved Survival with T Cell Clonotype Stability After Anti–CTLA-4 Treatment in Cancer Patients , 2014, Science Translational Medicine.

[98]  Joshua W. K. Ho,et al.  CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data , 2016, Genome Biology.

[99]  Nima Aghaeepour,et al.  Flow Cytometry Bioinformatics , 2013, PLoS Comput. Biol..

[100]  Hiroshi I. Suzuki,et al.  An Integrative Analysis of Transcriptome and Epigenome Features of ASCL1–Positive Lung Adenocarcinomas , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[101]  Paul J. Hoover,et al.  Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma , 2018, Cell.

[102]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[103]  M. Najafi,et al.  CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review , 2018, Journal of cellular physiology.

[104]  O. Stegle,et al.  Single-Cell Genome-Wide Bisulfite Sequencing for Assessing Epigenetic Heterogeneity , 2014, Nature Methods.

[105]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[106]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[107]  Nicolai J. Birkbak,et al.  Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade , 2016, Science.

[108]  Aviv Regev,et al.  A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells , 2016, Cell.

[109]  Darrell J Irvine,et al.  Roles for Innate Immunity in Combination Immunotherapies. , 2017, Cancer research.

[110]  Barry Smith,et al.  ImmPort, toward repurposing of open access immunological assay data for translational and clinical research , 2018, Scientific Data.

[111]  J. Lunceford,et al.  Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy , 2018, Science.

[112]  Bo Wang,et al.  Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning , 2016, Nature Methods.

[113]  Ash A. Alizadeh,et al.  Abstract PR09: The prognostic landscape of genes and infiltrating immune cells across human cancers , 2015 .

[114]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[115]  Pornpimol Charoentong,et al.  Computational genomics tools for dissecting tumour–immune cell interactions , 2016, Nature Reviews Genetics.

[116]  Morten Nielsen,et al.  NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction , 2009, BMC Bioinformatics.

[117]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[118]  K. Cibulskis,et al.  Detection of somatic mutations in human leukocyte antigen (HLA) genes using whole-exome sequencing , 2015 .

[119]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[120]  Sündüz Keles,et al.  Detecting differential binding of transcription factors with ChIP-seq , 2012, Bioinform..

[121]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[122]  A. Butte,et al.  xCell: digitally portraying the tissue cellular heterogeneity landscape , 2017, Genome Biology.

[123]  Jun S. Liu,et al.  Ultrasensitive detection of TCR hypervariable-region sequences in solid-tissue RNA–seq data , 2017, Nature Genetics.

[124]  J. Galon,et al.  Approaches to treat immune hot, altered and cold tumours with combination immunotherapies , 2019, Nature Reviews Drug Discovery.

[125]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[126]  Ash A. Alizadeh,et al.  High-throughput genomic profiling of tumor-infiltrating leukocytes. , 2016, Current opinion in immunology.

[127]  Benjamin Schubert,et al.  FRED 2: an immunoinformatics framework for Python , 2016, Bioinform..

[128]  Yu Wang,et al.  Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data , 2017, Genome Medicine.

[129]  Sean M. Hartig,et al.  Basic Image Analysis and Manipulation in ImageJ , 2013, Current protocols in molecular biology.

[130]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[131]  P. Klenerman,et al.  Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state , 2017, Nucleic acids research.

[132]  Mikhail Shugay,et al.  Towards error-free profiling of immune repertoires , 2014, Nature Methods.

[133]  E. King,et al.  Pan-cancer deconvolution of tumour composition using DNA methylation , 2018, Nature Communications.

[134]  G. Getz,et al.  Inferring tumour purity and stromal and immune cell admixture from expression data , 2013, Nature Communications.

[135]  John K Wiencke,et al.  Quantitative reconstruction of leukocyte subsets using DNA methylation , 2013, Genome Biology.

[136]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[137]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[138]  Alex Rubinsteyn,et al.  MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. , 2018, Cell systems.

[139]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[140]  Sean C. Bendall,et al.  Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum , 2011, Science.

[141]  Benjamin Schubert,et al.  OptiType: precision HLA typing from next-generation sequencing data , 2014, Bioinform..

[142]  V. Giudicelli,et al.  IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. , 2012, Methods in molecular biology.

[143]  A. del Sol,et al.  Bioinformatics Tools for Genome-Wide Epigenetic Research. , 2017, Advances in experimental medicine and biology.

[144]  Monika S. Kowalczyk,et al.  A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade , 2018, Cell.

[145]  Nancy R. Zhang,et al.  Bulk tissue cell type deconvolution with multi-subject single-cell expression reference , 2018, Nature Communications.

[146]  Helene Kretzmer,et al.  metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data , 2016, Genome research.

[147]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[148]  Boxi Kang,et al.  Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing , 2017, Cell.

[149]  Mark M. Davis,et al.  Cell type–specific gene expression differences in complex tissues , 2010, Nature Methods.

[150]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[151]  R. Weinberg,et al.  Understanding the tumor immune microenvironment (TIME) for effective therapy , 2018, Nature Medicine.

[152]  Alessandro Sette,et al.  The Immune Epitope Database (IEDB): 2018 update , 2018, Nucleic Acids Res..

[153]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[154]  O. Ornatsky,et al.  Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. , 2009, Analytical chemistry.

[155]  S. Orkin,et al.  METHOD Open Access , 2014 .

[156]  Sean C. Bendall,et al.  Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE , 2011, Nature Biotechnology.

[157]  Benjamin J. Raphael,et al.  Expanding the computational toolbox for mining cancer genomes , 2014, Nature Reviews Genetics.

[158]  Michael B. Stadler,et al.  An Immune Atlas of Clear Cell Renal Cell Carcinoma , 2017, Cell.