Quantum localization bounds Trotter errors in digital quantum simulation

A many-body localization phenomenon boosts the accuracy of digital quantum simulation on quantum computers. A fundamental challenge in digital quantum simulation (DQS) is the control of an inherent error, which appears when discretizing the time evolution of a quantum many-body system as a sequence of quantum gates, called Trotterization. Here, we show that quantum localization-by constraining the time evolution through quantum interference-strongly bounds these errors for local observables, leading to an error independent of system size and simulation time. DQS is thus intrinsically much more robust than suggested by known error bounds on the global many-body wave function. This robustness is characterized by a sharp threshold as a function of the Trotter step size, which separates a localized region with controllable Trotter errors from a quantum chaotic regime. Our findings show that DQS with comparatively large Trotter steps can retain controlled errors for local observables. It is thus possible to reduce the number of gate operations required to represent the desired time evolution faithfully.

[1]  Dieter Suter,et al.  Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer , 2004, quant-ph/0411049.

[2]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[3]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[4]  Tomotaka Kuwahara,et al.  Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. , 2015, Physical review letters.

[5]  Roderich Moessner,et al.  Equilibrium states of generic quantum systems subject to periodic driving. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[7]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling , 2016, Nature Communications.

[8]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[9]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[10]  C. Ramanathan,et al.  Exploring Localization in Nuclear Spin Chains. , 2016, Physical review letters.

[11]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[12]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[13]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[14]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[15]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[16]  Tomavz Prosen,et al.  Weak Quantum Chaos , 2017, 1701.09147.

[18]  R. Feynman Simulating physics with computers , 1999 .

[19]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[20]  P. Zoller,et al.  Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top , 2018, npj Quantum Information.

[21]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[22]  Charles E. Porter,et al.  Expectation Value Fluctuations in the Unitary Ensemble , 1963 .

[23]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[24]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[27]  Akira Endo,et al.  Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (2) - light dynamics and light-matter entanglement - , 2017 .

[28]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[29]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[30]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[31]  W. De Roeck,et al.  Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems , 2015, 1510.03405.

[32]  Luca D'Alessio,et al.  Many-body energy localization transition in periodically driven systems , 2012, 1210.2791.

[33]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[34]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[35]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[36]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[37]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[38]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[39]  E. Solano,et al.  Digital quantum simulation of spin models with circuit quantum electrodynamics , 2015, 1502.06778.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  B. Lanyon,et al.  Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System. , 2016, Physical review letters.

[42]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[43]  François Huveneers,et al.  Exponentially Slow Heating in Periodically Driven Many-Body Systems. , 2015, Physical review letters.

[44]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[45]  Tomotaka Kuwahara,et al.  Floquet-Magnus Theory and Generic Transient Dynamics in Periodically Driven Many-Body Quantum Systems , 2015, 1508.05797.

[46]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.