Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo.

[1]  A. Kicheva,et al.  Morphogen gradient formation. , 2009, Cold Spring Harbor perspectives in biology.

[2]  Arthur D Lander,et al.  Morpheus Unbound: Reimagining the Morphogen Gradient , 2007, Cell.

[3]  A. Landera,et al.  Membrane-Associated Non-Receptors and Morphogen Gradients , 2007 .

[4]  Q. Nie,et al.  Membrane-Associated Non-Receptors and Morphogen Gradients , 2007, Bulletin of mathematical biology.

[5]  Arthur D. Lander,et al.  Internalization and end flux in morphogen gradient formation , 2006 .

[6]  W. Sebald,et al.  Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation , 2006, Development.

[7]  E. Robertis,et al.  Regulation of ADMP and BMP2/4/7 at Opposite Embryonic Poles Generates a Self-Regulating Morphogenetic Field , 2005, Cell.

[8]  Qing Nie,et al.  Formation of the BMP activity gradient in the Drosophila embryo. , 2005, Developmental cell.

[9]  Osamu Shimmi,et al.  Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo , 2005, Cell.

[10]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[11]  Qing Nie,et al.  Spatially distributed morphogen production and morphogen gradient formation. , 2005, Mathematical biosciences and engineering : MBE.

[12]  Yuan Lou,et al.  Effects of Sog on Dpp-Receptor Binding , 2005, SIAM J. Appl. Math..

[13]  Qing Nie,et al.  Nonlinear Eigenvalue Problems in the Stability Analysis of Morphogen Gradients , 2004 .

[14]  O. Shimmi,et al.  Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo , 2003, Development.

[15]  Naama Barkai,et al.  Self-enhanced ligand degradation underlies robustness of morphogen gradients. , 2003, Developmental cell.

[16]  Arthur D. Lander,et al.  Can morphogen activity be enhanced by its inhibitors , 2003 .

[17]  Jeremy B. A. Green,et al.  Morphogen gradients, positional information, and Xenopus: Interplay of theory and experiment , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[18]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[19]  Qing Nie,et al.  Do morphogen gradients arise by diffusion? , 2002, Developmental cell.

[20]  D. Wagner,et al.  Modulation of BMP activity in dorsal-ventral pattern formation by the chordin and ogon antagonists. , 2002, Developmental biology.

[21]  M. Mullins,et al.  Dorsoventral patterning in the zebrafish: bone morphogenetic proteins and beyond. , 2002, Results and problems in cell differentiation.

[22]  T. Hirano,et al.  Organizer formation and function. , 2002, Results and problems in cell differentiation.

[23]  L. Solnica-Krezel Pattern Formation in Zebrafish , 2002, Results and Problems in Cell Differentiation.

[24]  Z. Lele,et al.  Zebrafish admp is required to restrict the size of the organizer and to promote posterior and ventral development , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  J. Gurdon,et al.  Morphogen gradient interpretation , 2001, Nature.

[26]  E. L. Ferguson,et al.  A positive role for Short gastrulation in modulating BMP signaling during dorsoventral patterning in the Drosophila embryo. , 2001, Development.

[27]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[28]  A. Teleman,et al.  Shaping Morphogen Gradients , 2001, Cell.

[29]  Ken W. Y. Cho,et al.  Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling , 2001, Nature.

[30]  Stephen C. Ekker,et al.  Twisted gastrulation is a conserved extracellular BMP antagonist , 2001, Nature.

[31]  W. Driever,et al.  Axis-inducing activities and cell fates of the zebrafish organizer. , 2000, Development.

[32]  O. Shimmi,et al.  Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. , 2000, Development.

[33]  J. Massagué,et al.  Controlling TGF-β signaling , 2000, Genes & Development.

[34]  J. Massagué,et al.  Controlling TGF-beta signaling. , 2000, Genes & development.

[35]  W. Godwin Article in Press , 2000 .

[36]  R. Ho,et al.  The nieuwkoid/dharma homeobox gene is essential for bmp2b repression in the zebrafish pregastrula. , 1999, Developmental biology.

[37]  M. Ekker,et al.  The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. , 1999, Development.

[38]  Michael Levine,et al.  Local inhibition and long-range enhancement of Dpp signal transduction by Sog , 1999, Nature.

[39]  A. Kuroiwa,et al.  In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. , 1999, Development.

[40]  M. Ekker,et al.  Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. , 1998, Developmental biology.

[41]  G. Thomsen,et al.  Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos , 1998, Mechanisms of Development.

[42]  M. Mullins Holy Tolloido: Tolloid cleaves SOG/Chordin to free DPP/BMPs. , 1998, Trends in genetics : TIG.

[43]  S. Fisher,et al.  Differential regulation of chordin expression domains in mutant zebrafish. , 1997, Developmental biology.

[44]  U. Strähle,et al.  Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. , 1997, Science.

[45]  L. Zon,et al.  The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. , 1997, Development.

[46]  Leslie Dale,et al.  Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity , 1997, Cell.

[47]  Ken W. Y. Cho,et al.  Production of a DPP Activity Gradient in the Early Drosophila Embryo through the Opposing Actions of the SOG and TLD Proteins , 1997, Cell.

[48]  Andrew P. McMahon,et al.  The zebrafish organizer requires chordino , 1997, Nature.

[49]  G. Thomsen Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. , 1997, Trends in genetics : TIG.

[50]  S. Holley,et al.  Fish are like flies are like frogs: conservation of dorsal-ventral patterning mechanisms. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  R. Patient,et al.  A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish , 1997, Mechanisms of Development.

[52]  Lewis Wolpert,et al.  Principles of Development , 1997 .

[53]  B. Biehs,et al.  The Drosophila decapentaplegic and short gastrulation genes function antagonistically during adult wing vein development. , 1996, Development.

[54]  D A Kane,et al.  dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. , 1996, Development.

[55]  A. McMahon,et al.  Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. , 1996, Genes & development.

[56]  J. Wrana,et al.  The Xenopus Dorsalizing Factor noggin Ventralizes Drosophila Embryos by Preventing DPP from Activating Its Receptor , 1996, Cell.

[57]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[58]  J. Shih,et al.  Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. , 1996, Development.

[59]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[60]  Yoshiki Sasai,et al.  A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin , 1995, Nature.

[61]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[62]  N. Ueno,et al.  Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. , 1995, Developmental biology.

[63]  G. Thomsen,et al.  Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. , 1995, Developmental genetics.

[64]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[65]  K. Anderson,et al.  Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. , 1992, Development.

[66]  M. O’Connor,et al.  The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1 , 1991, Cell.

[67]  H. Meinhardt Models of biological pattern formation , 1982 .

[68]  E. Hill Journal of Theoretical Biology , 1961, Nature.