A convenient preparation of aldonohydroxamic acids in water and crystal structure of L-erythronohydroxamic acid.

[1]  C. Ojala,et al.  Molecular and crystal structures of N-arylglycopyranosylamines formed by reaction between sulfanilamide and D-ribose, D-arabinose and D-mannose. , 2001, Carbohydrate research.

[2]  C. Muñoz-Caro,et al.  Suitability of different levels of theory for modelling of hydroxamic acids , 2000 .

[3]  K. Noguchi,et al.  Molecular and crystal structure of galactinol dihydrate [1-O-(alpha-D-galactopyranosyl)-myo-inositol dihydrate]. , 2000, Carbohydrate research.

[4]  M. Remko,et al.  Structure, reactivity and vibrational spectra of formohydroxamic and silaformohydroxamic acids: a comparative ab initio study , 2000 .

[5]  C. Ojala,et al.  Schiff bases or glycosylamines: crystal and molecular structures of four derivatives of D-mannose. , 2000, Carbohydrate research.

[6]  Georg E. Schulz,et al.  Catalytic Action of Fuculose 1-Phosphate Aldolase (Class II) as Derived from Structure-Directed Mutagenesis , 2000 .

[7]  I. Rayment,et al.  Evolution of enzymatic activities in the enolase superfamily: crystallographic and mutagenesis studies of the reaction catalyzed by D-glucarate dehydratase from Escherichia coli. , 2000, Biochemistry.

[8]  Y. Pang,et al.  Novel Stable Configurations and Tautomers of the Neutral and Deprotonated Hydroxamic Acids Predicted from High-Level ab Initio Calculations , 1999 .

[9]  L. Salmon,et al.  Competitive inhibitors of yeast phosphoglucose isomerase: synthesis and evaluation of new types of phosphorylated sugars from the synthon D-arabinolactone-5-phosphate. , 1999, Carbohydrate research.

[10]  G. Petsko,et al.  Evolution of enzymatic activities in the enolase superfamily: Identification of a 'new' general acid catalyst in the active site of D- galactonate dehydratase from Escherichia coli , 1999 .

[11]  L. Salmon,et al.  Synthesis and evaluation of a new inhibitor of phosphoglucose isomerases: the enediolate analogue 5-phospho-D-arabinohydroxamate. , 1998, Bioorganic & medicinal chemistry letters.

[12]  J. Kroon,et al.  CONFORMATIONAL POLYMORPHISM OF D-SORBITOL (D-GLUCITOL) : THE CRYSTAL AND MOLECULAR STRUCTURES OF D-GLUCITOL 2/3-HYDRATE AND EPSILON D-GLUCITOL , 1998 .

[13]  G. Schulz,et al.  Catalytic mechanism of the metal-dependent fuculose aldolase from Escherichia coli as derived from the structure. , 1996, Journal of molecular biology.

[14]  Karen N. Allen,et al.  Design, synthesis, and characterization of a potent xylose isomerase inhibitor, D-threonohydroxamic acid, and high-resolution X-ray crystallographic structure of the enzyme-inhibitor complex. , 1995, Biochemistry.

[15]  M. Morf,et al.  Crystal and molecular structures of d-glycero-l-gulo-heptitol, meso-glycero-allo-heptitol, and meso-glycero-allo-heptitol heptaacetate , 1993 .

[16]  D. A. Frankel,et al.  Supramolecular assemblies of diacetylenic aldonamides , 1991 .

[17]  M Karplus,et al.  Structure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: an analogue of the intermediate on the reaction pathway. , 1991, Biochemistry.

[18]  Maria Cristina Burla,et al.  SIR88 – a direct‐methods program for the automatic solution of crystal structures , 1989 .

[19]  A. Serianni,et al.  [1-13C]Aldono-1,4-lactones: conformational studies based on proton-proton, proton-carbon-13, and carbon-13-carbon-13 spin couplings and ab initio molecular orbital calculations , 1987 .

[20]  D. I. Stuart,et al.  An empirical method for correcting diffractometer data for absorption effects , 1983 .

[21]  A. Serianni,et al.  Cyanohydrin synthesis: studies with carbon-13-labeled cyanide , 1980 .

[22]  J. Chirgwin,et al.  The enediolate analogue 5-phosphoarabinonate as a mechanistic probe for phosphoglucose isomerase. , 1975, The Journal of biological chemistry.

[23]  K. D. Collins An activated intermediate analogue. The use of phosphoglycolohydroxamate as a stable analogue of a transiently occurring dihydroxyacetone phosphate-derived enolate in enzymatic catalysis. , 1974, The Journal of biological chemistry.

[24]  K. Kobashi,et al.  Effect of acyl residues of hydroxamic acids on urease inhibition. , 1971, Biochimica et biophysica acta.

[25]  R. Small,et al.  The crystal structure of acetohydroxamic acid hemihydrate , 1970 .

[26]  W. Sherman,et al.  Gas chromatography and mass spectrometry of trimethylsilyl sugar phosphates. , 1970, Journal of the American Chemical Society.

[27]  W. J. Humphlett Synthesis of some esters and lactones of aldonic acids , 1967 .

[28]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .

[29]  E. Hardegger,et al.  Zur Kenntnis der D‐, L‐ und DL‐Erythron‐ und Threonsäure‐lactone , 1951 .

[30]  H. Zaugg,et al.  The controlled sodium amalgam reduction of aldonolactones and their esters to aldoses and an improved synthesis of d-arabinose. , 1947, Journal of the American Chemical Society.

[31]  M. Wolfrom,et al.  Isolation of Aldonic Acid Lactones through their Hydrazides , 1946 .

[32]  T. Reichstein,et al.  Krystallisiertes l-Threonsäure-lacton und Synthese des l-Threonsäure-2-methyläthers , 1937 .

[33]  E. Clark THE STRUCTURE OF FUCOSE , 1922 .