Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts

[1]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[2]  L. Robitaille,et al.  Heteropolyacid/saponite-like clay complexes and their blends in amphiphilic SEBS , 2009 .

[3]  C. Serre,et al.  Porous Chromium Terephthalate MIL‐101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis , 2009 .

[4]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[5]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[6]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[7]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[8]  G. Shimizu,et al.  Phosphonate and sulfonate metal organic frameworks. , 2009, Chemical Society reviews.

[9]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[10]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[11]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[12]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[13]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[14]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[15]  Hossein Atashi,et al.  Catalytic Dehydration of Methanol to Dimethyl Ether Catalyzed by Aluminum Phosphate Catalysts , 2009 .

[16]  I. Fonseca,et al.  Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite , 2009 .

[17]  Z. Su,et al.  Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. , 2009, Journal of the American Chemical Society.

[18]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[19]  M. Taghizadeh,et al.  Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina , 2008 .

[20]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.

[21]  Andreas Martin,et al.  Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds , 2008 .

[22]  N. Maksimchuk,et al.  Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates , 2008 .

[23]  Jun Wang,et al.  Preparation of Keggin and Preyssler Heteropolyacid Catalysts on Amine-modified SBA-15 and Their Catalytic Performances in Esterification of n-Butanol with Acetic Acid , 2008 .

[24]  A. Corma,et al.  Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation , 2008 .

[25]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[26]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[27]  A. Corma,et al.  Gem-diamines as highly active organocatalysts for carbon–carbon bond formation , 2007 .

[28]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[29]  N. Mizuno,et al.  Acid–base catalyses by dimeric disilicoicosatungstates and divacant γ-Keggin-type silicodecatungstate parent: Reactivity of the polyoxometalate compounds controlled by step-by-step protonation of lacunary WO sites , 2007 .

[30]  I. Song,et al.  UV–vis spectroscopy studies of H3PMo12−xWxO40 heteropolyacid (HPA) catalysts in the solid state: Effects of water content and polyatom substitution , 2005 .

[31]  J. Haber,et al.  Catalytic performance of the dodecatungstophosphoric acid on different supports , 2003 .

[32]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[33]  A. Corma,et al.  Immobilized Proton Sponge on Inorganic Carriers: The Synergic Effect of the Support on Catalytic Activity , 2002 .

[34]  K. Nowiǹska,et al.  Transition metal modified lacunary heteropoly compounds as catalysts for oxidation of light paraffins , 2002 .

[35]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[36]  A. Corma,et al.  Catalytic Activity of Proton Sponge: Application to Knoevenagel Condensation Reactions , 1999 .

[37]  R. McCormick,et al.  In situ infrared study of the absorption of nitric oxide by 12-tungstophosphoric acid , 1998 .

[38]  Ivan V. Kozhevnikov,et al.  Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. , 1998, Chemical reviews.

[39]  L. I. Kuznetsova,et al.  Relation between structure and catalytic properties of transition metal complexes with heteropolyanion PW11O7−39 in oxidative reactions , 1997 .

[40]  L. I. Kuznetsova,et al.  Catalytic properties of Cr-containing heteropolytungstates in H2O2 participated reactions: H2O2 decomposition and oxidation of unsaturated hydrocarbons with H2O2 , 1996 .

[41]  H. Takaya,et al.  Ruthenium-catalyzed aldol and Michael reactions of nitriles. Carbon-carbon bond formation by .alpha.-C-H activation of nitriles. , 1995 .

[42]  I. Kozhevnikov,et al.  New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41 , 1994 .

[43]  Schwegler,et al.  Activated carbon as a support for heteropolyanion catalysts , 1992 .

[44]  M. Droege,et al.  A novel triperoxyniobium-containing polyoxoanion, SiW9(NbO2)3O377−: synthesis, characterization, catalytic allylic epoxidations with H2O2 and preliminary kinetic studies , 1991 .