Vision and Grasping: Humans vs. Robots

Biomimetic robotics is a rapidly developing field, and the limited literature about biological inspiration in robot grasping at cognitive level suggests that the field has still much to offer. Neuroscience studies indicate that vision-based reaching and grasping are important to the extent that an entire cortical pathway is dedicated to these skills. Nevertheless, recent findings point out the existence of strict relations between action-oriented (dorsal pathway) and categorization-oriented (ventral pathway) vision. In this paper, we will compare present day research on vision-based robotic grasping with the above mentioned neuroscience findings. Then, we propose a new approach to vision for grasping in robotics, which aims at improving the emulation of human skills through the integration of the information flows proceeding from the two visual pathways.

[1]  Henrik I. Christensen,et al.  Automatic grasp planning using shape primitives , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[2]  M. Goodale,et al.  The visual brain in action , 1995 .

[3]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[4]  G. Rizzolatti,et al.  Visuomotor neurons: ambiguity of the discharge or 'motor' perception? , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[5]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[6]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[7]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[8]  D. Perrett,et al.  Imitation, mirror neurons and autism , 2001, Neuroscience & Biobehavioral Reviews.

[9]  Maja J. Mataric,et al.  Exemplar-based primitives for humanoid movement classification and control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[11]  Yoseph Bar-Cohen,et al.  Biologically inspired intelligent robots , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  Giovanni Flammia What's Next for the E-Book? , 2000, IEEE Intell. Syst..

[13]  R. Howe,et al.  Human grasp choice and robotic grasp analysis , 1990 .

[14]  Rodney A. Brooks,et al.  Cambrian Intelligence: The Early History of the New AI , 1999 .

[15]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[16]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[17]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[18]  Antonio Morales,et al.  Using Experience for Assessing Grasp Reliability , 2004, Int. J. Humanoid Robotics.

[19]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[20]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[21]  Thea Iberall,et al.  Dextrous robot hands , 1990 .

[22]  Paul van Donkelaar,et al.  Dorsal and ventral visual stream contributions to perception-action interactions during pointing , 2002, Experimental Brain Research.

[23]  Ravi S. Menon,et al.  Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams , 2002, Neuron.

[24]  Luciano Fadiga,et al.  Perception Through Action , 1999 .

[25]  Maja J. Mataric,et al.  Getting Humanoids to Move and Imitate , 2000, IEEE Intell. Syst..

[26]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[27]  Antonio Bicchi,et al.  Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity , 2000, IEEE Trans. Robotics Autom..

[28]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[29]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.