A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws
暂无分享,去创建一个
[1] Todd Arbogast,et al. An Eulerian-Lagrangian WENO finite volume scheme for advection problems , 2012, J. Comput. Phys..
[2] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[3] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[4] Eitan Tadmor,et al. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..
[5] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[6] M. Zennaro. Natural continuous extensions of Runge-Kutta methods , 1986 .
[7] M. Zennaro. Natural continuous extensions of Runge-Kutta formulas , 1986 .
[8] John M. Stockie,et al. A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..
[9] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[10] Wei Guo,et al. A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations , 2014, J. Comput. Phys..
[11] A. Huerta,et al. Arbitrary Lagrangian–Eulerian Methods , 2004 .
[12] M. Mehrenberger,et al. GUIDING-CENTER SIMULATIONS ON CURVILINEAR MESHES , 2011 .
[13] Chi-Wang Shu,et al. A technique of treating negative weights in WENO schemes , 2000 .
[14] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[15] Chi-Wang Shu. Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .
[16] Chi-Wang Shu,et al. Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow , 2011, J. Comput. Phys..
[17] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[18] G. Russo,et al. Central WENO schemes for hyperbolic systems of conservation laws , 1999 .
[19] Prabhu Ramachandran,et al. Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..
[20] Gabriella Puppo,et al. Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..
[21] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[22] T. Yabe,et al. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .
[23] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[24] Jing-Mei Qiu,et al. Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation , 2011 .