ROSEFusion

Fig. 1. We introduce ROSEFusion, a depth-only online dense reconstruction which is stable and robust to highly fast camera motion. Built upon the volumetric depth fusion framework, our method solves the highly nonlinear optimization problem of fast-motion camera tracking using random optimization. In this example, the depth camera moves at a speed of 2m/s in average and up to 3.6m/s, leading to severe motion blur in RGB images. This sequence would break most state-of-the-art online reconstruction methods. Thanks to our novel particle filter optimization with swarm intelligence, our method is able to fuse the depth maps (resilient to motion blur) accurately, attaining a satisfying reconstruction quality. See the planar walls and the correct overall layout; the imperfect local geometry was mainly due to incomplete depth scanning. The tracked camera trajectory is visualized and color-coded with camera speed.

[1]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[2]  Matthias Nießner,et al.  RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[4]  Torsten Sattler,et al.  Real-Time Dense Mapping for Self-Driving Vehicles using Fisheye Cameras , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[5]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[6]  Seungkyu Lee,et al.  Time-of-Flight Depth Camera Motion Blur Detection and Deblurring , 2014, IEEE Signal Processing Letters.

[7]  Daniel Cremers,et al.  Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions , 2013, Robotics: Science and Systems.

[8]  Arturo Gil,et al.  Multi-robot visual SLAM using a Rao-Blackwellized particle filter , 2010, Robotics Auton. Syst..

[9]  Tim Weyrich,et al.  Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion , 2013, 2013 International Conference on 3D Vision.

[10]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[11]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  Torsten Sattler,et al.  BAD SLAM: Bundle Adjusted Direct RGB-D SLAM , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Stefan Leutenegger,et al.  Dense RGB-D-inertial SLAM with map deformations , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[15]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Matthias Nießner,et al.  BundleFusion , 2016, TOGS.

[17]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[18]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Michael Goesele,et al.  The Replica Dataset: A Digital Replica of Indoor Spaces , 2019, ArXiv.

[20]  Henrik I. Christensen,et al.  Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Bin Chen,et al.  Object-aware guidance for autonomous scene reconstruction , 2018, ACM Trans. Graph..

[22]  Vladlen Koltun,et al.  Robust reconstruction of indoor scenes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[24]  Jörg Stückler,et al.  Multi-resolution surfel maps for efficient dense 3D modeling and tracking , 2014, J. Vis. Commun. Image Represent..

[25]  Qiang Zhou,et al.  Multi-robot collaborative dense scene reconstruction , 2019, ACM Trans. Graph..

[26]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[27]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[28]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[29]  Jan-Michael Frahm,et al.  Detailed Real-Time Urban 3D Reconstruction from Video , 2007, International Journal of Computer Vision.

[30]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[31]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[32]  Heinrich Niemann,et al.  Using Quaternions for Parametrizing 3-D Rotations in Unconstrained Nonlinear Optimization , 2001, VMV.

[33]  Sharath Pankanti,et al.  Distributed Bundle Adjustment , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[34]  Marc Pollefeys,et al.  Sparse to Dense 3D Reconstruction from Rolling Shutter Images , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Davide Scaramuzza,et al.  Visual-Inertial Odometry of Aerial Robots , 2019, ArXiv.

[36]  Shahram Izadi,et al.  MonoFusion: Real-time 3D reconstruction of small scenes with a single web camera , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[37]  Matthias Nießner,et al.  Combining Inertial Navigation and ICP for Real-time 3D Surface Reconstruction , 2014, Eurographics.

[38]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[39]  Stefan Leutenegger,et al.  ElasticFusion: Dense SLAM Without A Pose Graph , 2015, Robotics: Science and Systems.

[40]  Kenneth Ward Church,et al.  Very sparse random projections , 2006, KDD '06.

[41]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[42]  Étienne Mémin,et al.  An efficient Rao-Blackwellized particle filter for object tracking , 2005, IEEE International Conference on Image Processing 2005.

[43]  Wei Sun,et al.  Autoscanning for coupled scene reconstruction and proactive object analysis , 2015, ACM Trans. Graph..

[44]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[45]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[46]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[47]  Prashant G. Mehta,et al.  A Controlled Particle Filter for Global Optimization , 2017, 1701.02413.

[48]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[49]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[50]  Luis Salgado,et al.  Real-time lane tracking using Rao-Blackwellized particle filter , 2012, Journal of Real-Time Image Processing.

[51]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[52]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[53]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[54]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[55]  SunXin,et al.  Very High Frame Rate Volumetric Integration of Depth Images on Mobile Devices , 2015 .

[56]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[57]  Kun Zhou,et al.  Subspace gradient domain mesh deformation , 2006, ACM Trans. Graph..

[58]  Chiara Bartolozzi,et al.  Event-Based Vision: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Yuhui Shi,et al.  Particle Filter Optimization: A Brief Introduction , 2016, ICSI.

[60]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[61]  Jiawen Chen,et al.  Scalable real-time volumetric surface reconstruction , 2013, ACM Trans. Graph..

[62]  Kai Xu,et al.  Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[64]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[65]  John J. Leonard,et al.  Kintinuous: Spatially Extended KinectFusion , 2012, AAAI 2012.

[66]  Anders P. Eriksson,et al.  A Consensus-Based Framework for Distributed Bundle Adjustment , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Daniel Cremers,et al.  Semi-dense Visual Odometry for a Monocular Camera , 2013, 2013 IEEE International Conference on Computer Vision.

[68]  Matthias Nießner,et al.  Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields , 2017, ACM Trans. Graph..

[69]  Yangyang Zhang,et al.  Particle Filter with Swarm Move for Optimization , 2008, PPSN.