Element-Free Galerkin solutions for Helmholtz problems: fomulation and numerical assessment of the pollution effect

Abstract The Element-Free Galerkin Method (EFGM), a particular case of the meshless methods, is examined in its application to acoustic wave propagation addressed by the Helmholtz equation. Dispersion and pollution effects, two problems encountered by the classical numerical methods, are reviewed. Numerical tests on two-dimensional problems focus on the parameters governing the formulation of the EFGM. They also demonstrate that the EFGM is affected by dispersion and pollution effects as well as FEM, but these effects are rather low, showing that the EFGM is a promising method.

[1]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[2]  Charbel Farhat,et al.  Residual-Free Bubbles for the Helmholtz Equation , 1996 .

[3]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[4]  P. Villon,et al.  GENERALIZING THE FEM: DIFFUSE APPROXIMATION AND DIFFUSE ELEMENTS , 1992 .

[5]  R. J. Astley,et al.  Mapped Wave Envelope Elements for Acoustical Radiation and Scattering , 1994 .

[6]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[7]  Philippe Bouillard,et al.  Error estimation and adaptivity for the finite element method in acoustics , 1998 .

[8]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method , 1998 .

[9]  Edmund Chadwick,et al.  Modelling of progressive short waves using wave envelopes , 1997 .

[10]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[11]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[12]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[13]  R. A. Uras,et al.  Multiresolution reproducing kernel particle methods in acoustics , 1996 .

[14]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[15]  Thomas J. R. Hughes,et al.  Recent developments in finite element methods for structural acoustics , 1996 .

[16]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[17]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[18]  Thomas J. R. Hughes,et al.  Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .

[19]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[20]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[21]  Ted Belytschko,et al.  Enforcement of essential boundary conditions in meshless approximations using finite elements , 1996 .

[22]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[23]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[24]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .