Mars‐solar wind interaction: LatHyS, an improved parallel 3‐D multispecies hybrid model

In order to better represent Mars-Solar wind interaction, we present an unprecedented model achieving spatial resolution down to 50 km, a so far unexplored resolution for global kinetic models of the Martian ionized environment. Such resolution approaches the ionospheric plasma scale height. In practice, the model is derived from a first version described in Modolo et al. [2005]. An important effort of parallelization has been conducted and is presented here. A better description of the ionosphere was also implemented including ionospheric chemistry, electrical conductivities and a drag force modelling the ion-neutral collisions in the ionosphere. This new version of the code, named LatHyS (Latmos Hybrid Simulation), is here used to characterize the impact of various spatial resolutions on simulation results. In addition, and following a global model challenge effort [Brain et al., 2010], we present the results of simulation run for three cases which allows addressing the effect of the supra-thermal corona and of the solar EUV activity on the magnetospheric plasma boundaries and on the global escape. Simulation results showed that global patterns are relatively similar for the different spatial resolution runs but finest grid runs provide a better representation of the ionosphere and display more details of the planetary plasma dynamic. Simulation results suggest that a significant fraction of escaping O+ ions is originated from below 1200 km altitude.

[1]  B. Jakosky,et al.  The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .

[2]  A. Nagy,et al.  Electron impact ionization in the vicinity of comets , 1987 .

[3]  J. Chaufray,et al.  Modeling of Venus, Mars, and Titan , 2011 .

[4]  P. Stancil,et al.  Charge Transfer in Collisions of C+ with H and H+ with C , 1998 .

[5]  Stas Barabash,et al.  Martian Atmospheric Erosion Rates , 2007, Science.

[6]  B. Hultqvist,et al.  First measurements of the ionospheric plasma escape from Mars , 1989, Nature.

[7]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[8]  M. Liemohn,et al.  Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape , 2015 .

[9]  T. Bagdonat,et al.  Plasma environment of Titan: a 3-D hybrid simulation study , 2006 .

[10]  L. Yin,et al.  Hybrid Simulation Codes: Past, Present and Future—A Tutorial , 2003 .

[11]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[12]  J. Spreiter,et al.  A new predictive model for determining solar wind-terrestrial planet interactions , 1980 .

[13]  A. Nagy,et al.  A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions , 2010 .

[14]  A. Matthews,et al.  Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .

[15]  M. Acuna,et al.  The magnetic field in the pile‐up region at Mars, and its variation with the solar wind , 2003 .

[16]  Christopher T. Russell,et al.  Effects of crustal field rotation on the solar wind plasma interaction with Mars , 2014 .

[17]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[18]  M. Rees Physics and Chemistry of the Upper Atmosphere , 1989 .

[19]  S. Holy Mariner 6 and 7 Ultraviolet Spectrometer Experiment. Analysis of Hydrogen Lyman-Alpha Data , 1971 .

[20]  Pekka Janhunen,et al.  Ion escape from Mars in a quasi‐neutral hybrid model , 2002 .

[21]  S. A. Ledvina,et al.  Modeling and Simulating Flowing Plasmas and Related Phenomena , 2008 .

[22]  R. Lillis,et al.  Three‐dimensional multifluid modeling of atmospheric electrodynamics in Mars' dynamo region , 2013 .

[23]  Raymond G. Roble,et al.  Neutral Upper Atmosphere and Ionosphere Modeling , 2008 .

[24]  R. Hartle,et al.  Background and pickup ion velocity distribution dynamics in Titan's plasma environment: 3D hybrid simulation and comparison with CAPS's observations , 2011 .

[25]  S. Barabash,et al.  Comparison of plasma data from ASPERA-3/Mars-Express with a 3-D hybrid simulation , 2007 .

[26]  M. Liemohn,et al.  The influence of production mechanisms on pick‐up ion loss at Mars , 2013 .

[27]  E. Kallio,et al.  Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars‐solar wind interaction , 2001 .

[28]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[29]  G. Chanteur,et al.  A global hybrid model for Mercury's interaction with the solar wind: Case study of the dipole representation , 2012 .

[30]  N. Terada,et al.  A three‐dimensional, multispecies, comprehensive MHD model of the solar wind interaction with the planet Venus , 2009 .

[31]  Bruce M. Jakosky,et al.  Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel , 2015 .

[32]  J. Fox Morphology of the dayside ionosphere of Mars: Implications for ion outflows , 2008 .

[33]  M. Acuna,et al.  Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .

[34]  G. Chanteur,et al.  Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF , 2009 .

[35]  R. Stebbings,et al.  Charge transfer between oxygen atoms and O+ and H+ ions , 1964 .

[36]  Helmut Lammer,et al.  Non-thermal water loss of the early Mars: 3D multi-ion hybrid simulations , 2010 .

[37]  Kenneth G. Powell,et al.  Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .

[38]  A. Nagy,et al.  Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields , 2010 .

[39]  R. Modolo,et al.  Capture of solar wind alpha‐particles by the Martian atmosphere , 2009 .

[40]  R. E. Johnson,et al.  Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space , 2007 .

[41]  Alan Matthews,et al.  Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary , 2006 .

[42]  Gábor Tóth,et al.  Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars , 2011 .

[43]  B. Jakosky,et al.  Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event , 2015 .

[44]  Stephen H. Brecht,et al.  Control of ion loss from Mars during solar minimum , 2012, Earth, Planets and Space.

[45]  M. Lester,et al.  Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields , 2008 .

[46]  A. Nagy,et al.  Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations , 2015 .

[47]  Ronan Modolo,et al.  3D hybrid simulations of the interaction of a magnetic cloud with a bow shock , 2015 .

[48]  Andrew F. Nagy,et al.  Ion escape fluxes from Mars , 2007 .

[49]  R. Lundin,et al.  Transterminator ion flow in the Martian ionosphere , 2010 .

[50]  M. Lopez-Valverde,et al.  Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions , 2006 .

[51]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[52]  Naoki Terada,et al.  A comparison of global models for the solar wind interaction with Mars , 2010 .

[53]  Douglas S. Harned,et al.  Quasineutral hybrid simulation of macroscopic plasma phenomena , 1982 .

[54]  Michael Charles Kelly,et al.  The Earth's Ionosphere: Plasma Physics and Electrodynamics, Second Edition , 2009 .

[55]  Gavin J. Pringle,et al.  A.I.K.E.F.: Adaptive hybrid model for space plasma simulations , 2011, Comput. Phys. Commun..

[56]  Pekka Janhunen,et al.  Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions , 2010 .

[57]  J. Chaufray,et al.  Three‐dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients , 2014 .

[58]  R. Trautner,et al.  The Mars Express mission: an overview , 2004 .

[59]  Francisco Gonzalez-Galindo,et al.  Three‐dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km , 2013 .

[60]  A. Nagy,et al.  Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model , 2014 .

[61]  Ronan Modolo,et al.  A global hybrid model for Titan's interaction with the Kronian plasma: Application to the Cassini Ta flyby , 2008 .

[62]  François Leblanc,et al.  3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions , 2016, J. Comput. Phys..

[63]  M. Acuna,et al.  Factors controlling the location of the Bow Shock at Mars , 2002 .

[64]  Andrew R. Poppe,et al.  Martian planetary heavy ion sputtering of Phobos , 2014 .

[65]  V. Krasnopolsky Mars' upper atmosphere and ionosphere at low, medium, and high solar activities: Implications for evolution of water , 2002 .

[66]  R. Roble,et al.  Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices , 1999 .

[67]  S. Brecht,et al.  The loss of water from Mars: Numerical results and challenges , 2010 .

[68]  David L. Mitchell,et al.  The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor , 2000 .

[69]  S. Barabash,et al.  Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields , 2011 .

[70]  H. Rosenbauer,et al.  Ions of planetary origin in the Martian magnetosphere (Phobos 2/Taus experiment) , 1991 .

[71]  F. Duru,et al.  Ion Energization and Escape on Mars and Venus , 2011 .

[72]  D. Mitchell,et al.  Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations , 2003 .

[73]  P. Richards,et al.  EUVAC: A solar EUV Flux Model for aeronomic calculations , 1994 .

[74]  Riku Jarvinen,et al.  A new 3‐D spherical hybrid model for solar wind interaction studies , 2013 .

[75]  G. Chanteur,et al.  Influence of the solar EUV flux on the Martian plasma environment , 2005 .

[76]  F. LeBlanc,et al.  Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN , 2015, Space Science Reviews.

[77]  Robert M. Winglee,et al.  Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events , 2006 .

[78]  R. Lundin Ion Acceleration and Outflow from Mars and Venus: An Overview , 2011 .

[79]  H. Hayakawa,et al.  Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express , 2004, Science.

[80]  S. Barabash,et al.  Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes , 2012, Earth, Planets and Space.

[81]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .