Nanofluids as a potential solution for Minimum Quantity Lubrication: A review

Several studies are being carried out to curtail the heat generated in machining. Among the various alternatives available, cutting fluids remain to be the choice. However, the various limitations of the cutting fluids restrict their application. Hence, different techniques are being explored to replace the use of cutting fluids, minimum quantity lubrication being one of them. This present article tries to review the available literature and examine nanofluids as potential candidates for minimum quantity lubrication.

[1]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[2]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[3]  V. Sridhara,et al.  NanoFluids—A New Promising Fluid for Cooling , 2009 .

[4]  C. Altan,et al.  The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids , 2011, Nanotechnology.

[5]  F. Duan,et al.  Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids , 2011, Nanoscale research letters.

[6]  M. A. El Baradie,et al.  Cutting fluids: Part I. Characterisation , 1996 .

[7]  Shane Y. Hong,et al.  New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V , 2001 .

[8]  Hongwei Xie,et al.  Thermal Conductivity of Suspensions Containing Nanosized SiC Particles , 2002 .

[9]  S. Tzeng,et al.  Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles , 2005 .

[10]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[11]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[12]  R R Srikant,et al.  Applicability of cutting fluids with nanoparticle inclusion as coolants in machining , 2009 .

[13]  A. B. Chattopadhyay,et al.  Determination and control of grinding zone temperature under cryogenic cooling , 1996 .

[14]  Bin Shen,et al.  Minimum quantity lubrication grinding using nanofluids , 2008 .

[15]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[16]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[17]  Haiyan Zhang,et al.  THERMAL CONDUCTIVITY OF POLYETHYLENE GLYCOL NANOFLUIDS CONTAINING CARBON COATED METAL NANOPARTICLES , 2010 .

[18]  Jason Chuang,et al.  Experimental microchannel heat sink performance studies using nanofluids , 2007 .

[19]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[20]  V. Astakhov Tribology of metal cutting , 2006 .

[21]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[22]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[23]  Marc J. Assael,et al.  Thermal Conductivity of Suspensions of Carbon Nanotubes in Water , 2004 .

[24]  Wei Chen,et al.  MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles , 2010 .

[25]  C. Evans,et al.  Cryogenic Diamond Turning of Stainless Steel , 1991 .

[26]  Xing Zhang,et al.  Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids , 2006 .

[27]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[28]  Junyan Liu,et al.  Research on experimentation of green cutting with water vapor as coolant and lubricant , 2005 .

[29]  Shane Y. Hong,et al.  Thermal aspects, material considerations and cooling strategies in cryogenic machining , 1999 .

[30]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[31]  Suresh Sivan,et al.  Limits for thermal conductivity of nanofluids , 2010 .

[32]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[33]  Ekkard Brinksmeier,et al.  Aspects of cooling lubrication reduction in machining advanced materials , 1999 .

[34]  Wang Xianju,et al.  Influence of pH on Nanofluids' Viscosity and Thermal Conductivity , 2009 .

[35]  J. Mccabe,et al.  Performance experience with near-dry machining of Aluminum© , 2001 .

[36]  V. Radhakrishnan,et al.  An investigation on solid lubricant moulded grinding wheels , 2003 .

[37]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[38]  S. Kakaç,et al.  Enhanced thermal conductivity of nanofluids: a state-of-the-art review , 2010 .

[39]  Pil-Ho Lee,et al.  Environmentally-Friendly Nano-fluid Minimum Quantity Lubrication (MQL) Meso-scale Grinding Process Using Nano-diamond Particles , 2010, 2010 International Conference on Manufacturing Automation.

[40]  T. Emmer,et al.  Environmentally clean metal cutting processes—machining on the way to dry cutting , 1999 .

[41]  P. V. Rao,et al.  Performance Improvement of End Milling Using Graphite as a Solid Lubricant , 2005 .

[42]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with carbon nanotube for nanofluids , 2005 .

[43]  Ping-Hei Chen,et al.  Thermal Conductivity of Nanofluid with Magnetic Nanoparticles , 2009 .

[44]  Ojha,et al.  Stability, pH and Viscosity Relationships in Zinc Oxide Based Nanofluids Subject to Heating and Cooling Cycles , 2010 .

[45]  C. T. Nguyen,et al.  Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system , 2007 .

[46]  D. Kodali,et al.  High performance ester lubricants from natural oils , 2002 .

[47]  K. M. Kumar,et al.  Analysis of Nanofluids as Cutting Fluid in Grinding EN-31 Steel , 2011 .

[48]  S. Tzeng,et al.  Mechanisms of Heat Transfer in Rotary Shaft of Rotating Machine with Nano-Sized Particles Lubricant , 2006 .

[49]  John W. Sutherland,et al.  Dry Machining and Minimum Quantity Lubrication , 2004 .

[50]  Dongsoo Jung,et al.  Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning , 2007 .

[51]  Mohand Tazerout,et al.  Detection of knock occurrence in a gas SI engine from a heat transfer analysis , 2006 .

[52]  Z. Y. Wang,et al.  Cryogenic machining of hard-to-cut materials , 2000 .

[53]  Y. Liao,et al.  Effects of Cutting Fluid with Nano Particles on the Grinding of Titanium Alloys , 2010 .

[54]  N. Suresh Kumar Reddy,et al.  Investigation to Study the Applicability of Solid Lubricant in Turning AISI 1040 steel , 2007 .

[55]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[56]  Singh Dilbag,et al.  Performance improvement of hard turning with solid lubricants , 2008 .

[57]  J. Eastman,et al.  Enhanced thermal conductivity through the development of nanofluids , 1996 .

[58]  John A. Schey,et al.  Metal Deformation Processes: Friction and Lubrication , 1970 .

[59]  G. Ding,et al.  Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants , 2009 .

[60]  M. C. Shaw Metal Cutting Principles , 1960 .

[61]  A. B. Chattopadhyay,et al.  The effect of cryogenic cooling on grinding forces , 1996 .

[62]  Lin Shi,et al.  Application of nanoparticles in domestic refrigerators , 2008 .

[63]  R R Srikant,et al.  Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel , 2010 .

[64]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[65]  Shane Y. Hong,et al.  Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V , 2001 .

[66]  P. V. Rao,et al.  Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling , 2006 .

[67]  Z. Y. Wang,et al.  Cryogenic PCBN turning of ceramic (Si3N4) , 1996 .

[68]  Ichiro Inasaki,et al.  Evaluation of Machinability with MQL System and Effectiveness in Production Lines , 2000 .

[69]  I. Inasaki,et al.  A Synthetic Ester as an Optimal Cutting Fluid for Minimal Quantity Lubrication Machining , 2002 .

[70]  Dr. B. Satyanarayana,et al.  Experimental Investigation of Microbial Contamination of Nano Cutting Fluids with Cnt Inclusion , 2011 .

[71]  Chunqing Tan,et al.  Rheological behaviour of nanofluids , 2007 .

[72]  Yanhui Yuan,et al.  The effect of particle size on the thermal conductivity of alumina nanofluids , 2009 .

[73]  N. Koratkar,et al.  Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids , 2011 .

[74]  John W. Sutherland,et al.  Issues Associated With MQL Implementation: Effect on Peripheral Milling Process Performance and Impact on Machining Economics , 2005 .

[75]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[76]  Rengasamy Ponnappan,et al.  Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study , 2007 .

[77]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[78]  Somchai Wongwises,et al.  Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU , 2009 .

[79]  Patrick Kwon,et al.  Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling , 2011 .

[80]  Dongsheng Zhu,et al.  Experimental investigation on viscosity of Cu-H2O nanofluids , 2009 .

[81]  Mansoo Choi,et al.  Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities , 2003 .