Potential of [18F]-Fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas

Background and purposePositron-emission tomography (PET) with [18F]-fluoromisonidazole (FMISO) permits consideration of radiotherapy dose escalation to hypoxic volumes in head and neck cancers (HNC). However, the definition of FMISO volumes remains problematic. The aims of this study are to confirm that delayed acquisition at 4 h is most appropriate for FMISO-PET imaging and to assess different methods of volume segmentation.Patients and methodsA total of 15 HNC patients underwent several FMISO-PET/computed tomography (CT) acquisitions 2, 3 and 4 h after FMISO injection. Three automatic methods of PET image segmentation were tested: fixed threshold, adaptive threshold based on the ratio between tumour-derived and background activities (RT/B) and the fuzzy locally adaptive Bayesian (FLAB) method. The hypoxic fraction (HF), which is defined as the ratio between the FMISO and CT volumes, was also calculated.ResultsThe RT/B for images acquired at 2, 3 and 4 h differed significantly, with mean values of 2.5 (1.7–2.9), 3 (2–4.5) and 3.4 (2.3–6.1), respectively. The mean tumour volume, as defined manually using CT images, was 39.1 ml (1.2–116 ml). After 4 h, the mean FMISO volumes were 18.9 (0.1–81), 9.5 (0.9–33.1) and 12.5 ml (0.9–38.4 ml) with fixed threshold, adaptive threshold and the FLAB method, respectively; median HF values were 0.47 (0.1–1.93), 0.25 (0.11–0.75) and 0.35 (0.14–1.05), respectively. FMISO volumes were significantly different.ConclusionThe best contrast is obtained at the 4-hour acquisition time. Large discrepancies were found between the three tested methods of volume segmentation.ZusammenfassungHintergrund und ZielDie Positronenemissionstomographie (PET) mit [18F]-Fluoromisonidazol (FMISO) ermöglicht in der Strahlentherapie für Kopf-Hals-Tumore (KHT) eine Dosissteigerung auf hypoxische Volumina. Allerdings bleibt die Bestimmung der FMISO-Volumina problematisch. Ziel dieser Studie ist es, verschiedene Volumen-Segmentierungsmethoden zu beurteilen und zu bestätigen, dass eine verzögerte Aufnahme von 4 h das Beste für die FMISO-PET-Bildgebung ist.Patienten und MethodenInsgesamt 15 KHT-Patienten unterzogen sich mehreren Aufnahmen einer FMISO-PET/Computertomographie (CT) jeweils 2, 3 und 4 h nach FMISO-Injektion. Es wurden drei automatische Segmentierungsmethoden von PET-Bildern getestet: ein fester Schwellenwert, ein adaptiver Schwellenwert, basierend auf dem Verhältnis zwischen den tumorösen und den Hintergrundaktivitäten (VT/H), sowie die „fuzzy-locally-adaptive-bayesian“-(FLAB-)Methode. Die hypoxische Fraktion (HF), die als das Verhältnis zwischen dem FMISO-Volumen und dem CT-Volumen definiert ist, wurde ebenfalls berechnet.ErgebnisseDie VT/H für Bilderaufnahmen nach 2, 3 und 4 h unterschieden sich mit einer mittleren Wert von jeweils 2,5 (1,7–2,9), 3 (2–4,5) und 3,4 (2,3–6,1) signifikant. Das mittlere, manuell mittels CT definierte Tumorvolumen betrug 39,1 ml (1,2–116). Nach 4 h ergaben sich mittlere FMISO-Volumina und eine mittlere HF von jeweils 18,9 ml (0,1–81) und 0,47 (0,1–1,93) mit dem festen Schwellenwert, 9,5 ml (0,9–33,1) und 0,25 (0,11–0,75) mit dem adaptiven Schwellenwert sowie 12,5 ml (0,9–38,4) und 0,35 (0,14–1,05) mit der FLAB-Methode. Die FMISO-Volumina waren signifikant unterschiedlich.SchlussfolgerungDen besten Kontrast erhält man bei der 4-Stunden-Aufnahme. Zwischen den drei getesteten Segmentierungsverfahren wurden große Unterschiede festgestellt.

[1]  J. Overgaard,et al.  Modification of Hypoxia-Induced Radioresistance in Tumors by the Use of Oxygen and Sensitizers. , 1996, Seminars in radiation oncology.

[2]  Richard A Popple,et al.  Tumor control probability for selective boosting of hypoxic subvolumes, including the effect of reoxygenation. , 2002, International journal of radiation oncology, biology, physics.

[3]  D. Brizel,et al.  Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[4]  David L. Schwartz,et al.  Tumor Hypoxia Imaging with [F-18] Fluoromisonidazole Positron Emission Tomography in Head and Neck Cancer , 2006, Clinical Cancer Research.

[5]  Roland Bares,et al.  Hypoxia-imaging with 18F-Misonidazole and PET: Changes of kinetics during radiotherapy of head-and-neck cancer , 2007 .

[6]  Roland Bares,et al.  Hypoxia-imaging with (18)F-Misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. , 2007, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[7]  Daniela Thorwarth,et al.  Hypoxia dose painting by numbers: a planning study. , 2007, International journal of radiation oncology, biology, physics.

[8]  Gig Mageras,et al.  Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. , 2008, International journal of radiation oncology, biology, physics.

[9]  Sigrid Stroobants,et al.  Dose Painting in Radiotherapy for Head and Neck Squamous Cell Carcinoma: Value of Repeated Functional Imaging with 18F-FDG PET, 18F-Fluoromisonidazole PET, Diffusion-Weighted MRI, and Dynamic Contrast-Enhanced MRI , 2009, Journal of Nuclear Medicine.

[10]  Christian Roux,et al.  A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET , 2009, IEEE Transactions on Medical Imaging.

[11]  Olivier Barret,et al.  Comparison between CT- and FDG-PET-defined target volumes for radiotherapy planning in head-and-neck cancers. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[12]  F. Mottaghy,et al.  Intensity-Modulated Radiotherapy for Prostate Cancer Implementing Molecular Imaging with 18F-Choline PET-CT to Define a Simultaneous Integrated Boost , 2010, Strahlentherapie und Onkologie.

[13]  M. Baumann,et al.  Zwei oder vier Stunden [18F]FMISO-PET in Kopf-Hals-Karzinomen: , 2011 .

[14]  L. Gianolli,et al.  PET-guided dose escalation tomotherapy in malignant pleural mesothelioma , 2011, Strahlentherapie und Onkologie.

[15]  J. Steinbach,et al.  Two or four hour [¹⁸F]FMISO-PET in HNSCC. When is the contrast best? , 2010, Nuklearmedizin. Nuclear medicine.

[16]  Vincent Gregoire,et al.  Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. , 2011, Seminars in radiation oncology.

[17]  Wade P. Smith,et al.  Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[18]  J. Steinbach,et al.  Two or four hour [18F]FMISO-PET in HNSCC , 2011, Nuklearmedizin.

[19]  Dimitris Visvikis,et al.  Impact of the accuracy of automatic tumour functional volume delineation on radiotherapy treatment planning , 2012, Physics in medicine and biology.

[20]  P. Vaupel,et al.  Intra- and intertumor heterogeneities in total, chronic, and acute hypoxia in xenografted squamous cell carcinomas , 2012, Strahlentherapie und Onkologie.

[21]  Michael Baumann,et al.  Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. , 2012, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  Keiichi Magota,et al.  High Reproducibility of Tumor Hypoxia Evaluated by 18F-Fluoromisonidazole PET for Head and Neck Cancer , 2013, The Journal of Nuclear Medicine.

[23]  岡本祥三 High reproducibility of tumor hypoxia evaluated by 18 F-fluoromisonidazole PET for head and neck cancer. , 2014 .