Interaction of DWORF with SERCA and PLB as determined by EPR spectroscopy.

[1]  G. Veglia,et al.  A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca2+-ATPase , 2021, Structure.

[2]  L. M. Espinoza-Fonseca,et al.  Nothing Regular about the Regulins: Distinct Functional Properties of SERCA Transmembrane Peptide Regulatory Subunits , 2021, International journal of molecular sciences.

[3]  P. Kekenes-Huskey,et al.  Inhibitory and stimulatory micropeptides preferentially bind to different conformations of the cardiac calcium pump , 2021, bioRxiv.

[4]  M. J. Lemieux,et al.  Dwarf open reading frame (DWORF) is a direct activator of the sarcoplasmic reticulum calcium pump SERCA , 2021, eLife.

[5]  Daniel R. Stroik,et al.  The transmembrane peptide DWORF activates SERCA2a via dual mechanisms , 2021, The Journal of biological chemistry.

[6]  Jeffrey J. Gray,et al.  Protein docking and steered molecular dynamics suggest alternative phospholamban-binding sites on the SERCA calcium transporter , 2020, The Journal of Biological Chemistry.

[7]  Francesca N. Delling,et al.  Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association , 2020, Circulation.

[8]  L. Bhatt,et al.  SERCA stimulation: A potential approach in therapeutics , 2020, Chemical biology & drug design.

[9]  David D. Thomas,et al.  Trajectory-Based Simulation of EPR Spectra: Models of Rotational Motion for Spin Labels on Proteins. , 2019, The journal of physical chemistry. B.

[10]  Deo R. Singh,et al.  Newly Discovered Micropeptide Regulators of SERCA Form Oligomers but Bind to the Pump as Monomers. , 2019, Journal of molecular biology.

[11]  M. J. Lemieux,et al.  The Phospholamban Pentamer Alters Function of the Sarcoplasmic Reticulum Calcium Pump SERCA. , 2019, Biophysical journal.

[12]  E. Olson,et al.  The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy , 2018, eLife.

[13]  David D. Thomas,et al.  Effect of Phosphorylation on Interactions between Transmembrane Domains of SERCA and Phospholamban. , 2018, Biophysical journal.

[14]  Stephen C. Cannon,et al.  A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle , 2016, Science.

[15]  C. Desplan,et al.  Small peptides control heart activity , 2016, Science.

[16]  David D. Thomas,et al.  Phospholamban phosphorylation, mutation, and structural dynamics: a biophysical approach to understanding and treating cardiomyopathy , 2015, Biophysical Reviews.

[17]  John M. Shelton,et al.  A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance , 2015, Cell.

[18]  Nikolaus Rajewsky,et al.  Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation , 2014, The EMBO journal.

[19]  Joseph A. Rothnagel,et al.  Emerging evidence for functional peptides encoded by short open reading frames , 2014, Nature Reviews Genetics.

[20]  David D. Thomas,et al.  New and Notable Rotational Diffusion of Membrane Proteins: Characterization of Protein- Protein Interactions in Membranes Protein-protein Interactions in Calcium Transport Regulation Probed by Saturation Transfer Electron Paramagnetic Resonance , 2022 .

[21]  Anuradha Kalyanasundaram,et al.  SERCA pump isoforms: Their role in calcium transport and disease , 2007, Muscle & nerve.

[22]  David D. Thomas,et al.  Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  David D. Thomas,et al.  Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. , 2004, Biochemistry.

[24]  E. Kranias,et al.  Calcium: Phospholamban: a crucial regulator of cardiac contractility , 2003, Nature Reviews Molecular Cell Biology.

[25]  D. D. Thomas,et al.  Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase. , 2000, Biochemistry.

[26]  E. Kranias,et al.  Transgenic Approaches to Define the Functional Role of Dual Site Phospholamban Phosphorylation* , 1998, The Journal of Biological Chemistry.

[27]  G. Dorn,et al.  Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. , 1996, The Journal of clinical investigation.

[28]  Z. X. Wang,et al.  An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule , 1995, FEBS letters.

[29]  D. Bers,et al.  Protein kinase inhibitors reduce SR Ca transport in permeabilized cardiac myocytes. , 1994, The American journal of physiology.

[30]  S. Eletr,et al.  Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. , 1972, Biochimica et biophysica acta.

[31]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[32]  C. Toyoshima,et al.  Structural basis of ion pumping by Ca2+-ATPase , 2004 .

[33]  M. Periasamy,et al.  SERCA1a can functionally substitute for SERCA2a in the heart. , 1999, American journal of physiology. Heart and circulatory physiology.

[34]  S. O. Smith,et al.  Structural perspectives of phospholamban, a helical transmembrane pentamer. , 1997, Annual review of biophysics and biomolecular structure.

[35]  D. Stokes,et al.  Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. , 1990, Biophysical journal.

[36]  A. Katz,et al.  Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum. , 1975, Recent advances in studies on cardiac structure and metabolism.