Location-Based Activity Recognition using Relational Markov Networks

In this paper we define a general framework for activity recognition by building upon and extending Relational Markov Networks. Using the example of activity recognition from location data, we show that our model can represent a variety of features including temporal information such as time of day, spatial information extracted from geographic databases, and global constraints such as the number of homes or workplaces of a person. We develop an efficient inference and learning technique based on MCMC. Using GPS location data collected by multiple people we show that the technique can accurately label a person's activity locations. Furthermore, we show that it is possible to learn good models from less data by using priors extracted from other people's data.

[1]  Ronen I. Brafman,et al.  Learning to Coordinate Efficiently: A Model-based Approach , 2003, J. Artif. Intell. Res..

[2]  C. Thompson The Statistical Mechanics of Phase Transitions , 1978 .

[3]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[4]  Khaled S. Al-Sultan,et al.  A Tabu search approach to the clustering problem , 1995, Pattern Recognit..

[5]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[6]  Xuemei Wang,et al.  Learning by Observation and Practice: An Incremental Approach for Planning Operator Acquisition , 1995, ICML.

[7]  Robert P. W. Duin,et al.  Bagging and the Random Subspace Method for Redundant Feature Spaces , 2001, Multiple Classifier Systems.

[8]  Moshe Tennenholtz,et al.  Ranking systems: the PageRank axioms , 2005, EC '05.

[9]  Srinivasan Parthasarathy,et al.  Detection and visualization of anomalous structures in molecular dynamics simulation data , 2004, IEEE Visualization 2004.

[10]  David W. Aha,et al.  A Comparative Evaluation of Sequential Feature Selection Algorithms , 1995, AISTATS.

[11]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[12]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[13]  Luiz Eduardo Soares de Oliveira,et al.  A Methodology for Feature Selection Using Multiobjective Genetic Algorithms for Handwritten Digit String Recognition , 2003, Int. J. Pattern Recognit. Artif. Intell..

[14]  Shun-ichi Amari,et al.  Learning Coefficients of Layered Models When the True Distribution Mismatches the Singularities , 2003, Neural Computation.

[15]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[16]  Philip R. Cohen,et al.  Toward A Formalism for Conversation Protocols Using Joint Intention Theory , 2002, Comput. Intell..

[17]  Kentaro Toyama,et al.  Project Lachesis: Parsing and Modeling Location Histories , 2004, GIScience.

[18]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[19]  Yoav Shoham,et al.  Conditional, Hierarchical, Multi-Agent Preferences , 1998, TARK.

[20]  John F. Roddick,et al.  A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..

[21]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[22]  Paul Resnick,et al.  Trust among strangers in internet transactions: Empirical analysis of eBay' s reputation system , 2002, The Economics of the Internet and E-commerce.

[23]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[24]  Nupur Bhatnagar Spatial Data Mining , 2006 .

[25]  Srinivasan Parthasarathy,et al.  A generalized framework for mining spatio-temporal patterns in scientific data , 2005, KDD '05.

[26]  E. Maasland,et al.  Auction Theory , 2021, Springer Texts in Business and Economics.

[27]  Sumio Watanabe Algebraic Information Geometry for Learning Machines with Singularities , 2000, NIPS.

[28]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[29]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .

[30]  Jérôme Lang,et al.  Allocation of indivisible goods: a general model and some complexity results , 2005, AAMAS '05.

[31]  J. Oxford,et al.  Oxford , 1968, Leaving The Arena.

[32]  Yann Chevaleyre,et al.  Negotiating over small bundles of resources , 2005, AAMAS '05.

[33]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[34]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.

[35]  Piet Schenelaars Public opinion , 1994, Bio/Technology.

[36]  Nicholas R. Jennings,et al.  The Evolution of the Grid , 2003 .

[37]  Stephen R. Garner,et al.  WEKA: The Waikato Environment for Knowledge Analysis , 1996 .

[38]  Nell P. McAngusTodd,et al.  The dynamics of dynamics: A model of musical expression , 1992 .

[39]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[40]  C. R. Rao,et al.  Statistical analysis of shape of objects based on landmark data. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Michael Wooldridge,et al.  Understanding the Emergence of Conventions in Multi-Agent Systems , 1995, ICMAS.

[42]  Moshe Tennenholtz,et al.  Emergent Conventions in Multi-Agent Systems: Initial Experimental Results and Observations (Preliminary Report) , 1992, KR.

[43]  Joseph Y. Halpern,et al.  Ra-tional secret sharing and multiparty computation , 2004, STOC 2004.

[44]  Andrew McCallum,et al.  Confidence Estimation for Information Extraction , 2004, NAACL.

[45]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[46]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[47]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[48]  Walter Buylaert,et al.  Tolerance to gamma-hydroxybutyrate in the rat: pharmakinetic and pharmacodynamic aspects , 2002 .

[49]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[50]  Nicolas Maudet,et al.  On optimal outcomes of negotiations over resources , 2003, AAMAS '03.

[51]  Srinivasan Parthasarathy,et al.  Discovering Spatial Relationships Between Approximately Equivalent Patterns in Contact Maps , 2004, BIOKDD.

[52]  Srinivasan Parthasarathy,et al.  Feature Mining Paradigms for Scientific Data , 2003, SDM.

[53]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[54]  Tze-Yun Leong,et al.  Fuzzy K-means clustering with missing values , 2001, AMIA.

[55]  Yan Huang,et al.  Discovering Spatial Co-location Patterns: A Summary of Results , 2001, SSTD.

[56]  K. Wachter The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .

[57]  S. Moscovici La psychanalyse, son image et son public , 2004 .

[58]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[59]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[60]  Alexey Tsymbal,et al.  Ensemble feature selection with the simple Bayesian classification , 2003, Inf. Fusion.

[61]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[62]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[63]  Tuomas Sandholm,et al.  Minimal Preference Elicitation in Combinatorial Auctions , 2001, IJCAI 2001.

[64]  Moshe Tennenholtz,et al.  Game Theory and Artificial Intelligence , 2002, Foundations and Applications of Multi-Agent Systems.

[65]  Ron Kohavi,et al.  Data Mining Using MLC a Machine Learning Library in C++ , 1996, Int. J. Artif. Intell. Tools.

[66]  Jon Doyle,et al.  Impediments to Universal Preference-Based Default Theories , 1989, KR.

[67]  E. H. Clarke Multipart pricing of public goods , 1971 .

[68]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[69]  Mark Steedman,et al.  Bootstrapping statistical parsers from small datasets , 2003, EACL.

[70]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[71]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[72]  Vijay Krishna,et al.  Efficient Mechanism Design , 1998 .

[73]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[74]  Sanjay Chawla,et al.  Complex spatial relationships , 2003, Third IEEE International Conference on Data Mining.

[75]  Michael Wooldridge,et al.  The complexity of contract negotiation , 2005, Artif. Intell..

[76]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[77]  Gilles Bisson,et al.  Learning in FOL with a Similarity Measure , 1992, AAAI.

[78]  Johannes Gehrke,et al.  MAFIA: a maximal frequent itemset algorithm for transactional databases , 2001, Proceedings 17th International Conference on Data Engineering.

[79]  W. Browder,et al.  Annals of Mathematics , 1889 .

[80]  Mohammed J. Zaki,et al.  Mining Protein Contact Maps , 2002, BIOKDD.

[81]  Luc De Raedt,et al.  Molecular feature mining in HIV data , 2001, KDD '01.

[82]  Xin Zhang,et al.  Fast mining of spatial collocations , 2004, KDD.

[83]  David M. Kreps,et al.  Game Theory and Economic Modelling , 1992 .

[84]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[85]  Henry A. Kautz,et al.  Inferring activities from interactions with objects , 2004, IEEE Pervasive Computing.

[86]  Henry Kautz,et al.  Inferring ADLs from interactions with objects , 2004 .

[87]  David J. C. MacKay,et al.  Developments in Probabilistic Modelling with Neural Networks - Ensemble Learning , 1995, SNN Symposium on Neural Networks.

[88]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[89]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[90]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[91]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[92]  Sumio Watanabe,et al.  Singularities in mixture models and upper bounds of stochastic complexity , 2003, Neural Networks.

[93]  Anoop Sarkar,et al.  Corrected Co-training for Statistical Parsers , 2003 .

[94]  Sanjoy Dasgupta,et al.  PAC Generalization Bounds for Co-training , 2001, NIPS.

[95]  Mykola Pechenizkiy,et al.  Diversity in search strategies for ensemble feature selection , 2005, Inf. Fusion.

[96]  Kurt Hornik,et al.  Learning in linear neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[97]  Dietrich Wettschereck,et al.  Relational Instance-Based Learning , 1996, ICML.

[98]  Inon Zuckerman,et al.  Universal Voting Protocol Tweaks to Make Manipulation Hard , 2003, IJCAI.

[99]  Craig Boutilier,et al.  Cooperative Negotiation in Autonomic Systems using Incremental Utility Elicitation , 2002, UAI.

[100]  Andrew McCallum,et al.  Accurate Information Extraction from Research Papers using Conditional Random Fields , 2004, NAACL.

[101]  Noam Nisan,et al.  Exponential communication inefficiency of demand queries , 2005, TARK.

[102]  Claire Cardie,et al.  Limitations of Co-Training for Natural Language Learning from Large Datasets , 2001, EMNLP.

[103]  Yann Chevaleyre,et al.  Multiagent Resource Allocation with K -additive Utility Functions , 2004 .

[104]  Jordi Delgado,et al.  Emergence of social conventions in complex networks , 2002, Artif. Intell..

[105]  H. Jaeger Discrete-time, discrete-valued observable operator models: a tutorial , 2003 .

[106]  Yoav Shoham,et al.  Towards a general theory of non-cooperative computation , 2003, TARK '03.

[107]  Philip S. Yu,et al.  Interval query indexing for efficient stream processing , 2004, CIKM '04.

[108]  J. van Leeuwen,et al.  Agent Mediated Electronic Commerce II , 1999, Lecture Notes in Computer Science.

[109]  Michael R. James,et al.  Predictive State Representations: A New Theory for Modeling Dynamical Systems , 2004, UAI.

[110]  Lakhmi C. Jain,et al.  Designing classifier fusion systems by genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[111]  Siddhartha Bhattacharyya,et al.  Evolutionary algorithms in data mining: multi-objective performance modeling for direct marketing , 2000, KDD '00.

[112]  Daniel A. Keim,et al.  CircleView: a new approach for visualizing time-related multidimensional data sets , 2004, AVI.

[113]  E. H. Clarke Incentives in public decision-making , 1980 .

[114]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[115]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[116]  Sebastian Thrun,et al.  Learning low dimensional predictive representations , 2004, ICML.

[117]  David J. Miller,et al.  A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data , 1996, NIPS.

[118]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[119]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[120]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[121]  John Shawe-Taylor,et al.  Using string kernels to identify famous performers from their playing style , 2004, Intell. Data Anal..

[122]  Padhraic Smyth,et al.  Translation-invariant mixture models for curve clustering , 2003, KDD '03.

[123]  Jean-Gabriel Ganascia,et al.  Clustering of Conceptual Graphs with Sparse Data , 2004, ICCS.

[124]  Peter Auer,et al.  The Nonstochastic Multiarmed Bandit Problem , 2002, SIAM J. Comput..

[125]  Tao Jiang,et al.  Clustering Binary Fingerprint Vectors with Missing Values for DNA Array Data Analysis , 2004, J. Comput. Biol..

[126]  Paul R. Milgrom,et al.  Putting Auction Theory to Work: The Simultaneous Ascending Auction , 1999, Journal of Political Economy.

[127]  Edna Ullmann-Margalit,et al.  The Emergence Of Norms , 1977 .

[128]  Alexey Tsymbal,et al.  Bagging and Boosting with Dynamic Integration of Classifiers , 2000, PKDD.

[129]  Mikhail J. Atallah,et al.  A Linear Time Algorithm for the Hausdorff Distance Between Convex Polygons , 1983, Inf. Process. Lett..

[130]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[131]  Hirotugu Akaike,et al.  Likelihood and the Bayes procedure , 1980 .

[132]  Efstathios Stamatatos,et al.  Music Performer Recognition Using an Ensemble of Simple Classifiers , 2002, ECAI.

[133]  Eric Horvitz,et al.  Web-Enhanced GPS , 2005, LoCA.

[134]  Bing Ma,et al.  Selective visualization of vortices in hydrodynamic flows , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[135]  Yasuhiko Morimoto,et al.  Mining frequent neighboring class sets in spatial databases , 2001, KDD '01.

[136]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[137]  David C. Parkes,et al.  Ascending Price Vickrey Auctions Using Primal-Dual Algorithms∗ , 2004 .

[138]  Moshe Tennenholtz,et al.  On the Emergence of Social Conventions: Modeling, Analysis, and Simulations , 1997, Artif. Intell..

[139]  Yoav Shoham,et al.  Multi-Agent Reinforcement Learning:a critical survey , 2003 .

[140]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[141]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[142]  Miki Aoyagi,et al.  Desingularization and the Generalization Error of Reduced Rank Regression in Bayesian Estimation , 2004 .

[143]  James E. Kittock Emergent Conventions and the Structure of Multi--Agent Systems , 1995 .

[144]  J. Wyatt Decision support systems. , 2000, Journal of the Royal Society of Medicine.

[145]  Yoshua Bengio,et al.  Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies , 2001 .

[146]  Risto Miikkulainen,et al.  Solving Non-Markovian Control Tasks with Neuro-Evolution , 1999, IJCAI.

[147]  Vincent Conitzer,et al.  Towards a Characterization of Polynomial Preference Elicitation with Value Queries in Combinatorial Auctions (Extended Abstract) , 2004, COLT.

[148]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[149]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[150]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[151]  Matthew J. Beal,et al.  Graphical Models and Variational Methods , 2001 .

[152]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[153]  Moshe Tennenholtz,et al.  Non-cooperative computation: Boolean functions with correctness and exclusivity , 2005, Theor. Comput. Sci..

[154]  Elchanan Mossel,et al.  On approximately fair allocations of indivisible goods , 2004, EC '04.

[155]  Padraig Cunningham,et al.  Diversity versus Quality in Classification Ensembles Based on Feature Selection , 2000, ECML.

[156]  P. Ehrlich,et al.  The Evolution of Norms , 2005, PLoS biology.

[157]  David C. Parkes,et al.  Optimal Auction Design for Agents with Hard Valuation Problems , 1999, Agent Mediated Electronic Commerce.

[158]  Moshe Tennenholtz,et al.  Reputation Systems: An Axiomatic Approach , 2004, UAI.

[159]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[160]  Gerhard Widmer,et al.  Automatic Recognition of Famous Artists by Machine , 2004, ECAI.

[161]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.

[162]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.