On the mechanical, electronic, and optical properties of the boron nitride analog for the recently synthesized biphenylene network: a DFT study

[1]  Da-ping Zhu,et al.  Synthesis of a monolayer fullerene network , 2022, Nature.

[2]  Fuquan Bai,et al.  B N counterpart of biphenylene network: A theoretical investigation , 2022, Applied Surface Science.

[3]  A. Shapeev,et al.  Anisotropic mechanical response, high negative thermal expansion, and outstanding dynamical stability of biphenylene monolayer revealed by machine-learning interatomic potentials , 2022, FlatChem.

[4]  S. Pantelides,et al.  Structure of Amorphous Two-Dimensional Materials: Elemental Monolayer Amorphous Carbon versus Binary Monolayer Amorphous Boron Nitride. , 2021, Nano letters.

[5]  S. Louie,et al.  Discovering and understanding materials through computation , 2021, Nature Materials.

[6]  A. Foster,et al.  Biphenylene network: A nonbenzenoid carbon allotrope , 2021, Science.

[7]  J. Vencovský,et al.  Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study , 2021, Scientific Reports.

[8]  J. Pontes,et al.  Electronic, optical, vibrational and thermodynamic properties of phaBN structure: A first principles study , 2020, 2012.00410.

[9]  T. Saleh Nanomaterials: Classification, properties, and environmental toxicities , 2020 .

[10]  M. Brza,et al.  Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review , 2020, Polymers.

[11]  Yuebing Zheng,et al.  Opto-thermoelectric microswimmers , 2020, Light, science & applications.

[12]  L. A. Ribeiro,et al.  Optoelectronic properties of amorphous carbon-based nanotube and nanoscroll , 2020, Physica E: Low-dimensional Systems and Nanostructures.

[13]  Jia Siqi,et al.  T-graphene and its boron nitride analogue as versatile drug delivery systems , 2020 .

[14]  D. Galvão,et al.  On the Mechanical and Thermal Stability of Free-standing Monolayer Amorphous Carbon , 2020, 2002.04682.

[15]  Aron Walsh,et al.  The 2019 materials by design roadmap , 2018, Journal of physics D: Applied physics.

[16]  Nor Azah Yusof,et al.  Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications , 2018, Materials.

[17]  Yue Liu,et al.  Materials discovery and design using machine learning , 2017 .

[18]  Alberto García,et al.  The psml format and library for norm-conserving pseudopotential data curation and interoperability , 2017, Comput. Phys. Commun..

[19]  R. Ruoff,et al.  Mechanical properties of atomically thin boron nitride and the role of interlayer interactions , 2017, Nature Communications.

[20]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[21]  D. Sánchez-Portal,et al.  Charge-transfer states and optical transitions at the pentacene-TiO2 interface , 2017 .

[22]  B. Mortazavi,et al.  New two-dimensional boron nitride allotropes with attractive electronic and optical properties , 2017 .

[23]  Xinyu Fan,et al.  Penta-BxNy sheet: a density functional theory study of two-dimensional material , 2016, Scientific Reports.

[24]  Dinesh Singh,et al.  Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs , 2016 .

[25]  L. A. Ribeiro,et al.  Encapsulated β-carotene in ZnO nanotubes: Theoretical insight into the stabilization dynamics , 2015 .

[26]  Y. X. Zheng,et al.  Electronic and optical properties of novel carbon allotropes , 2015, 1508.07038.

[27]  A. Oganov,et al.  Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones. , 2015, Nano letters.

[28]  Igor Aharonovich,et al.  Quantum emission from hexagonal boron nitride monolayers , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[29]  Y. Kawazoe,et al.  Penta-graphene: A new carbon allotrope , 2015, Proceedings of the National Academy of Sciences.

[30]  Alexander A. Balandin,et al.  Graphene Thermal Properties: Applications in Thermal Management and Energy Storage , 2014 .

[31]  V. Fal’ko,et al.  High-sensitivity photodetectors based on multilayer GaTe flakes. , 2014, ACS nano.

[32]  Robert H. Hurt,et al.  All in the graphene family - A recommended nomenclature for two-dimensional carbon materials , 2013 .

[33]  R. Amal,et al.  A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications , 2012 .

[34]  Brandon W. Whitman,et al.  Electronic properties of the biphenylene sheet and its one-dimensional derivatives. , 2010, ACS nano.

[35]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[36]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[37]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[38]  L. Morris About San Diego , 2005 .

[39]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[40]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[41]  Tae-Soo Kim,et al.  Band gap engineering of amorphous silicon quantum dots for light-emitting diodes , 2001 .

[42]  Jitesh H. Panchal,et al.  Key computational modeling issues in Integrated Computational Materials Engineering , 2013, Comput. Aided Des..

[43]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[44]  W. Schmahl,et al.  Zeitschrift für Kristallographie - Crystalline Materials , 2010 .