Distributionally Robust Chance-Constrained Linear Programs with Applications

In this paper, we discuss linear programs in which the data that specify the constraints are subject to random uncertainty. A usual approach in this setting is to enforce the constraints up to a given level of probability. We show that for a wide class of probability distributions (i.e. radial distributions) on the data, the probability constraints can be explicitly converted into convex second order cone (SOC) constraints, and hence the probability constrained linear program can be solved exactly with great efficiency. We next analyze the situation when the probability distribution of the data in not completely specified, but it is only known to belong to a given class of distributions. In this case, we provide explicit convex conditions that guarantee the satisfaction of the probability constraints, for any possible distribution belonging to the given class. Application examples to portfolio optimization and model predictive control are used to illustrate the results.

[1]  Jean-Paul Penot,et al.  Metrically well-set minimization problems , 1992 .

[2]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[3]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[4]  Petar S. Kenderov,et al.  Generic well-posedness of optimization problems in topological spaces , 1989 .

[5]  Dominique Arleti' Az,et al.  On Primal-Dual Stability in Convex Optimization , 1996 .

[6]  J. Lahrache,et al.  Stability results for convergence of convex sets and functions in nonreflexive spaces , 1996 .

[7]  C. Panne,et al.  Minimum-Cost Cattle Feed Under Probabilistic Protein Constraints , 1963 .

[8]  C. Zălinescu,et al.  Persistence and stability of solutions of Hamilton–Jacobi equations , 2008 .

[9]  E. N. Barron,et al.  Applications of the Hopf-Lax formula for u t + H ( u,Du ) = 0 , 1998 .

[10]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[11]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[12]  R. Tempo,et al.  Radially truncated uniform distributions for probabilistic robustness of control systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[13]  Xiang Li,et al.  Application of probabilistically constrained linear programs to risk-adjusted controller design , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[14]  L. McLinden,et al.  Preservation of convergence of convex sets and functions in finite dimensions , 1981 .

[15]  R. Wets,et al.  Stochastic programming , 1989 .

[16]  Cyril Imbert,et al.  Convex Analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations , 2001 .

[17]  B. Ross Barmish,et al.  The uniform distribution: A rigorous justification for its use in robustness analysis , 1996, Math. Control. Signals Syst..

[18]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[19]  Jean-Paul Penot,et al.  Continuity of Usual Operations and Variational Convergences , 2003 .

[20]  Jean-Paul Penot,et al.  Preservation of persistence and stability under intersections and operations, part 1: Persistence , 1993 .

[21]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[22]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[23]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[24]  Andrew Eberhard,et al.  Slice convergence of parametrised sums of convex functions in non-reflexive spaces , 1999, Bulletin of the Australian Mathematical Society.

[25]  G. Barles,et al.  Discontinuous solutions of deterministic optimal stopping time problems , 1987 .

[26]  Michael I. Jordan,et al.  Minimax Probability Machine , 2001, NIPS.

[27]  Constantino Lagoa,et al.  On the convexity of probabilistically constrained linear programs , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[28]  Stan Uryasev,et al.  Probabilistic Constrained Optimization , 2000 .

[29]  G. Calafiore,et al.  Loop gain under random feedback , 2001 .

[30]  Jean-Paul Penot,et al.  Operations on convergent families of sets and functions , 1990 .

[31]  I. Olkin,et al.  Multivariate Chebyshev Inequalities , 1960 .

[32]  Adib Bagh,et al.  Epi/Hypo–Convergence: The Slice Topology and Saddle Points Approximation , 1996 .

[33]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[34]  N. Cristianini,et al.  Estimating the moments of a random vector with applications , 2003 .

[35]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[36]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[37]  P. S. Shcherbakov,et al.  Random spherical uncertainty in estimation and robustness , 2000, IEEE Trans. Autom. Control..

[38]  Roberto Lucchetti,et al.  The EPI-Distance Topology: Continuity and Stability Results with Applications to Convex Optimization Problems , 1992, Math. Oper. Res..

[39]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..