Algebraic complexity, asymptotic spectra and entanglement polytopes

Matrix rank is multiplicative under the Kronecker product, additive under the direct sum, normalised on identity matrices and non-increasing under multiplying from the left and from the right by any matrices. It is the only real matrix parameter with these properties. Strassen studied the tensor extension: find all maps from k-tensors to the reals that are multiplicative under the tensor Kronecker product, additive under the direct sum, normalised on "identity tensors", and non-increasing under acting with linear maps on the k tensor factors. These maps form the "asymptotic spectrum of k-tensors" and capture the asymptotic relations among tensors, including the asymptotic tensor rank. We give the first explicit construction of an infinite family of elements in the asymptotic spectrum of complex k-tensors, based on information theory and entanglement polytopes. Other results on tensors include an extension of the Coppersmith-Winograd method to higher-order tensors. In graph theory, as a new instantiation of the abstract theory of asymptotic spectra, we introduce the asymptotic spectrum of graphs, which captures the Shannon capacity, a graph parameter characterizing zero-error communication complexity. Examples of elements in the asymptotic spectrum of graphs are the Lovasz theta number and the fractional Haemers bounds. Finally, we study algebraic branching programs, an algebraic model of computation. Ben-Or and Cleve proved that width-3 abps can compute any polynomial efficiently in the formula size, and Allender and Wang proved that some polynomials cannot be computed by any width-2 abp. We prove that any polynomial can be efficiently approximated by a width-2 abp.

[1]  Linda Ness,et al.  A Stratification of the Null Cone Via the Moment Map , 1984 .

[2]  J. M. Landsberg,et al.  Hypersurfaces with degenerate duals and the Geometric Complexity Theory Program , 2010, ArXiv.

[3]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[4]  Ernie Croot,et al.  Progression-free sets in Z_4^n are exponentially small , 2016, 1605.01506.

[5]  Raul Andres Leal Rodriguez,et al.  Modalities through the looking glass: a study on coalgebraic modal logics and their applications , 2011 .

[6]  Rianne Kaptein,et al.  Effective focused retrieval by exploiting query context and document structure , 2012, SIGF.

[7]  Victor Y. Pan,et al.  Strassen's algorithm is not optimal trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[8]  Thomas Lickteig,et al.  A Note on Border Rank , 1984, Inf. Process. Lett..

[9]  Noam Nisan,et al.  Lower bounds for non-commutative computation , 1991, STOC '91.

[10]  Asaf Shapira Green's conjecture and testing linear-invariant properties , 2009, STOC '09.

[11]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[12]  G. Pólya,et al.  Series, integral calculus, theory of functions , 1998 .

[13]  Matthias Christandl,et al.  Tensor surgery and tensor rank , 2018, computational complexity.

[14]  Matthias Christandl,et al.  Asymptotic tensor rank of graph tensors: beyond matrix multiplication , 2016, computational complexity.

[15]  Matthias Christandl,et al.  Tensor rank is not multiplicative under the tensor product , 2017, ArXiv.

[16]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[17]  Marijn Koolen,et al.  The meaning of structure: the value of link evidence for information retrieval , 2011, SIGF.

[18]  Hu Fu,et al.  Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication , 2014, APPROX-RANDOM.

[19]  Luke Pebody,et al.  Proof of a Conjecture of Kleinberg-Sawin-Speyer , 2016 .

[20]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[21]  V. Strassen,et al.  Degeneration and complexity of bilinear maps: Some asymptotic spectra. , 1991 .

[22]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[23]  V. Strassen Gaussian elimination is not optimal , 1969 .

[24]  Yves Edel Extensions of Generalized Product Caps , 2004, Des. Codes Cryptogr..

[25]  Y. Shitov How hard is the tensor rank , 2016, 1611.01559.

[26]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[27]  Madhu Sudan,et al.  Algebraic property testing: the role of invariance , 2008, Electron. Colloquium Comput. Complex..

[28]  J. Landsberg The border rank of the multiplication of 2×2 matrices is seven , 2005 .

[29]  Hanspeter Kraft,et al.  Geometrische Methoden in der Invariantentheorie , 1984 .

[30]  Arnold Schönhage,et al.  Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..

[31]  Joshua A. Grochow,et al.  Boundaries of VP and VNP , 2016, ICALP.

[32]  S. Zhong Orthogonality and quantum geometry: Towards a relational reconstruction of quantum theory , 2015 .

[33]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[34]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[35]  Ketan Mulmuley,et al.  Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..

[36]  J. M. Landsberg,et al.  A $2n^2-log(n)-1$ lower bound for the border rank of matrix multiplication , 2016, ArXiv.

[37]  Matthias Christandl,et al.  Universal points in the asymptotic spectrum of tensors , 2017, STOC.

[38]  Christopher Umans,et al.  Fast matrix multiplication using coherent configurations , 2012, SODA.

[39]  P. Henk,et al.  Nonstandard provability for Peano Arithmetic: A modal perspective , 2016 .

[40]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[41]  H. de Holanda Cunha Nobrega,et al.  Games for Functions: Baire Classes, Weihrauch Degrees, Transfinite Computations, and Ranks , 2019, The Bulletin of Symbolic Logic.

[42]  Robert D. Kleinberg,et al.  The growth rate of tri-colored sum-free sets , 2016, Discrete Analysis.

[43]  Don Coppersmith,et al.  On the Asymptotic Complexity of Matrix Multiplication , 1982, SIAM J. Comput..

[44]  R. McEliece,et al.  Hide and Seek, Data Storage, and Entropy , 1971 .

[45]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[46]  Multilinear Algebra and Applications , 2022 .

[47]  M. Marshall Positive polynomials and sums of squares , 2008 .

[48]  Jeroen Zuiddam,et al.  The Asymptotic Spectrum of Graphs and the Shannon Capacity , 2018, Combinatorica.

[49]  R. Garrido Alhama Computational modelling of Artificial Language Learning : Retention, Recognition & Recurrence , 2017 .

[50]  M. W. Madsen The kid, the clerk, and the gambler: Critical studies in statistics and cognitive science , 2015 .

[51]  Michael Walter,et al.  Multipartite Quantum States and their Marginals , 2014, 1410.6820.

[52]  V. Pan New combinations of methods for the acceleration of matrix multiplications , 1981 .

[53]  Michael Ben-Or,et al.  Computing Algebraic Formulas Using a Constant Number of Registers , 1992, SIAM J. Comput..

[54]  Jordan S. Ellenberg,et al.  On large subsets of $F_q^n$ with no three-term arithmetic progression , 2016 .

[55]  Eberhard Becker,et al.  Zum Darstellungssatz von Kadison-Dubois , 1983 .

[56]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[57]  Arun Ram,et al.  Book Review: Young tableaux: With applications to representation theory and geometry , 1999 .

[58]  Willem H. Haemers,et al.  On Some Problems of Lovász Concerning the Shannon Capacity of a Graph , 1979, IEEE Trans. Inf. Theory.

[59]  Fleur L. Bouwer,et al.  What do we need to hear a beat? The influence of attention, musical abilities, and accents on the perception of metrical rhythm , 2016 .

[60]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[61]  Anna Blasiak A Graph-Theoretic Approach To Network Coding , 2013 .

[62]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[63]  Harry Buhrman,et al.  Clean Quantum and Classical Communication Protocols. , 2016, Physical review letters.

[64]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[65]  A. J. Stothers On the complexity of matrix multiplication , 2010 .

[66]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[67]  Edgar Andrade-Lotero Models of language: towards a practice-based account of information in natural language , 2012 .

[68]  Peter Bürgisser Degenerationsordnung und Trägerfunktional bilinearer Abbildungen , 1997 .

[69]  Ishay Haviv,et al.  Sunflowers and Testing Triangle-Freeness of Functions , 2014, computational complexity.

[70]  Aram W. Harrow,et al.  Nonzero Kronecker Coefficients and What They Tell us about Spectra , 2007 .

[71]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[72]  Hugo C. Huurdeman Supporting the complex dynamics of the information seeking process , 2018 .

[73]  V. Strassen The asymptotic spectrum of tensors. , 1988 .

[74]  Madhu Sudan,et al.  Testing Linear-Invariant Non-linear Properties: A Short Report , 2010, Property Testing.

[75]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[76]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[77]  TOBIAS FRITZ,et al.  Resource convertibility and ordered commutative monoids , 2015, Mathematical Structures in Computer Science.

[78]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[79]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[80]  M. Brion,et al.  Sur l'image de l'application moment , 1987 .

[81]  Volker Strassen,et al.  The asymptotic spectrum of tensors and the exponent of matrix multiplication , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[82]  Peter Bürgisser,et al.  The Complexity of Factors of Multivariate Polynomials , 2001, Found. Comput. Math..

[83]  G. Scarpa Quantum entanglement in non-local games, graph parameters and zero-error information theory , 2013 .

[84]  Noga Alon,et al.  The Shannon Capacity of a Union , 1998, Comb..

[85]  Michal Oszmaniec,et al.  Convexity of momentum map, Morse index, and quantum entanglement , 2014 .

[86]  Nitin Saxena,et al.  The Power of Depth 2 Circuits over Algebras , 2009, FSTTCS.

[87]  Dario Bini Relations between exact and approximate bilinear algorithms. Applications , 1980 .

[88]  Peter Bürgisser,et al.  Explicit lower bounds via geometric complexity theory , 2012, STOC '13.

[89]  V. Strassen Relative bilinear complexity and matrix multiplication. , 1987 .

[90]  Peter D. Jarvis,et al.  Tensor Rank, Invariants, Inequalities, and Applications , 2012, SIAM J. Matrix Anal. Appl..

[91]  J. M. Landsberg,et al.  Equations for Lower Bounds on Border Rank , 2013, Exp. Math..

[92]  David E. Roberson,et al.  Bounds on Entanglement Assisted Source-channel Coding Via the Lovász Theta Number and Its Variants , 2014, TQC.

[93]  Victor Y. Pan,et al.  New Fast Algorithms for Matrix Operations , 1980, SIAM J. Comput..

[94]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[95]  Victor Y. Pan,et al.  Fast Feasible and Unfeasible Matrix Multiplication , 2018, ArXiv.

[96]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[97]  Markus Bläser,et al.  The border support rank of two-by-two matrix multiplication is seven , 2018, Chic. J. Theor. Comput. Sci..

[98]  Sergey Norin,et al.  A DISTRIBUTION ON TRIPLES WITH MAXIMUM ENTROPY MARGINAL , 2016, Forum of Mathematics, Sigma.

[99]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[100]  Victor Y. Pan,et al.  How to Multiply Matrices Faster , 1984, Lecture Notes in Computer Science.

[101]  Joshua A. Grochow Unifying and generalizing known lower bounds via geometric complexity theory , 2013, ArXiv.

[102]  B. D. Janssen Retained or lost in transmission?: Analyzing and predicting stability in Dutch folk songs , 2018 .

[103]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[104]  Joshua A. Grochow,et al.  On cap sets and the group-theoretic approach to matrix multiplication , 2016, ArXiv.

[105]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[106]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[107]  Neeraj Kayal,et al.  Approaching the Chasm at Depth Four , 2013, 2013 IEEE Conference on Computational Complexity.

[108]  Eric Allender,et al.  On the power of algebraic branching programs of width two , 2011, computational complexity.

[109]  Peter Bürgisser,et al.  Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.

[110]  Jop Briët,et al.  On the orthogonal rank of Cayley graphs and impossibility of quantum round elimination , 2016, ArXiv.

[111]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[112]  Teresa Piovesan Quantum entanglement: insights via graph parameters and conic optimization , 2016 .

[113]  V. Vinay,et al.  The Chasm at Depth Four, and Tensor Rank : Old results, new insights , 2016, Electron. Colloquium Comput. Complex..

[114]  Noga Alon,et al.  On sunflowers and matrix multiplication , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[115]  Matthias Christandl,et al.  Asymptotic entanglement transformation between W and GHZ states , 2013, 1310.3244.

[116]  Arnab Bhattacharyya,et al.  Lower bounds for testing triangle-freeness in Boolean functions , 2010, SODA '10.

[117]  Noam Nisan,et al.  Lower bounds on arithmetic circuits via partial derivatives , 2005, computational complexity.

[118]  Guillaume Malod,et al.  Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..

[119]  Boris Bukh,et al.  On a Fractional Version of Haemers’ Bound , 2019, IEEE Transactions on Information Theory.

[120]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[121]  Jeroen Zuiddam A note on the gap between rank and border rank , 2015, ArXiv.

[122]  V. Strassen Algebra and Complexity , 1994 .

[123]  Francesco Romani,et al.  Some Properties of Disjoint Sums of Tensors Related to Matrix Multiplication , 1982, SIAM J. Comput..

[124]  Verena Tobler,et al.  Spezialisierung und Degeneration von Tensoren , 1997 .

[125]  Harry Buhrman,et al.  Nondeterministic Quantum Communication Complexity: the Cyclic Equality Game and Iterated Matrix Multiplication , 2016, ITCS.

[126]  J. M. Landsberg,et al.  New Lower Bounds for the Border Rank of Matrix Multiplication , 2011, Theory Comput..