Accelerating ABC methods using Gaussian processes

Approximate Bayesian computation (ABC) methods are used to approximate posterior distributions using simulation rather than likelihood calculations. We introduce Gaussian process (GP) accelerated ABC, which we show can significantly reduce the number of simulations required. As computational resource is usually the main determinant of accuracy in ABC, GP-accelerated methods can thus enable more accurate inference in some models. GP models of the unknown log-likelihood function are used to exploit continuity and smoothness, reducing the required computation. We use a sequence of models that increase in accuracy, using intermediate models to rule out regions of the parameter space as implausible. The methods will not be suitable for all problems, but when they can be used, can result in significant computational savings. For the Ricker model, we are able to achieve accurate approximations to the posterior distribution using a factor of 100 fewer simulator evaluations than comparable Monte Carlo approaches, and for a population genetics model we are able to approximate the exact posterior for the first time.

[1]  Ian Vernon,et al.  Galaxy formation : a Bayesian uncertainty analysis. , 2010 .

[2]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[3]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[4]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[5]  Anthony O'Hagan,et al.  Diagnostics for Gaussian Process Emulators , 2009, Technometrics.

[6]  Richard D Wilkinson,et al.  Estimating primate divergence times by using conditioned birth-and-death processes. , 2009, Theoretical population biology.

[7]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[8]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[9]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[10]  S. Tavaré,et al.  Using the fossil record to estimate the age of the last common ancestor of extant primates , 2002, Nature.

[11]  N. Chopin,et al.  Sequential Quasi-Monte Carlo , 2014, 1402.4039.

[12]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[13]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[14]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[15]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[16]  A. Seheult,et al.  Pressure Matching for Hydrocarbon Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer Experiments , 1997 .

[17]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[18]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[20]  Michael P. H. Stumpf,et al.  Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..

[21]  Radford M. Neal,et al.  MCMC for non-Linear State Space Models Using Ensembles of Latent Sequences , 2013 .

[22]  S. Tavaré,et al.  Dating primate divergences through an integrated analysis of palaeontological and molecular data. , 2011, Systematic biology.

[23]  Nicolas Chopin,et al.  Expectation Propagation for Likelihood-Free Inference , 2011, 1107.5959.

[24]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[25]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[26]  Anthony N. Pettitt,et al.  Bayesian indirect inference using a parametric auxiliary model , 2015, 1505.03372.

[27]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.