Set Robust Control Invariance for Linear Discrete Time Systems

This paper introduces set robust control invariance, a concept that generalizes robust control invariance for systems described by difference equations to systems described by difference inclusions of special structure. The concept is useful for the analysis and synthesis of uncertain systems where a given control policy results in, for each initial state, a tube of trajectories rather than a sing trajectory; it also reveals the properties required for the terminal constraint set in receding horizon control of constrained linear systems with bounded disturbances and shows how improved terminal sets may be constructed. The family of set robust control invariant sets is characterized and the most important members of this family, the minimal and the maximal, are identified.

[1]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[2]  Jean Pierre Aubin,et al.  Applied abstract analysis , 1977 .

[3]  A. Garulli,et al.  Robustness in Identification and Control , 1989 .

[4]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[5]  Franco Blanchini,et al.  Minimum-time control for uncertain discrete-time linear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[6]  A. Kurzhanski,et al.  On the Theory of Trajectory Tubes — A Mathematical Formalism for Uncertain Dynamics, Viability and Control , 1993 .

[7]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[8]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[9]  David Q. Mayne,et al.  Robust time-optimal control of constrained linear Systems , 1997, Autom..

[10]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[11]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[12]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[13]  Ilya Kolmanovsky,et al.  Fast reference governors for systems with state and control constraints and disturbance inputs , 1999 .

[14]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[15]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[16]  Luigi Chisci,et al.  Systems with persistent disturbances: predictive control with restricted constraints , 2001, Autom..

[17]  David Q. Mayne,et al.  Control of Constrained Dynamic Systems , 2001, Eur. J. Control.

[18]  Vladimir M. Veliov,et al.  Solution tubes to differential inclusions within a collection of sets , 2002 .

[19]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[20]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[21]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[22]  R.S. Smith,et al.  Robust model predictive control of constrained linear systems , 2004, Proceedings of the 2004 American Control Conference.

[23]  Giuseppe Carlo Calafiore,et al.  Ellipsoidal bounds for uncertain linear equations and dynamical systems , 2004, Autom..

[24]  A. Kurzhanski Dynamic optimization for nonlinear target control synthesis , 2004 .

[25]  D. Q. Mayne,et al.  A simple tube controller for efficient robust model predictive control of constrained linear discret , 2005 .

[26]  D. Mayne,et al.  OPTIMIZED ROBUST CONTROL INVARIANT SETS FOR CONSTRAINED LINEAR DISCRETE-TIME SYSTEMS , 2005 .

[27]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[28]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..