Impact of Ionomer Content on Proton Exchange Membrane Fuel Cell Performance

The effect of Nafion ionomer content on performance of a proton exchange membrane (PEM) fuel cell operated with home-made anodic and cathodic electrodes fabricated from a novel metal organic framework (MOF) derived Pt-based electrocatalyst was investigated via numerical simulation and experimental measurement. First, the parameter sensitivity analysis was performed to identify the most influential parameters of the model. Then, these parameters were calibrated for different fuel cell designs investigated in the current study by employing the corresponding experimental data. Afterwards, the calibrated model was used to examine the impact of Nafion content in the catalyst layer of home-made electrodes. Finally, the qualitative trend predicted by this model was experimentally surveyed by varying the Nafion content between 10–50 wt.% in the catalyst layer of home-made electrodes. At the anode side, the performance of home-made electrode in a PEM fuel cell demonstrated small dependency on Nafion content. For the cathodic home-made electrode, Nafion content was found to affect the PEM fuel cell performance more strongly. Although the model could correctly capture the impact of Nafion content on calculated polarization curves, the model predicted optimum values significantly deviate from the experimental results. This was related to the several simplifications made during model development.

[1]  S. Litster,et al.  Effects of an agglomerate size distribution on the PEFC agglomerate model , 2012 .

[2]  Hans Müller-Steinhagen,et al.  Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells , 2006 .

[3]  Partha P. Mukherjee,et al.  Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer , 2006 .

[4]  W. Tao,et al.  Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation. Part II: Results of sensitivity analysis and validation of the model , 2006 .

[5]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[6]  G. Sasikumar,et al.  Optimum Nafion content in PEM fuel cell electrodes , 2004 .

[7]  Parameter Estimates for a Polymer Electrolyte Membrane Fuel Cell Cathode , 2013, 1308.4590.

[8]  Partha P. Mukherjee,et al.  Direct numerical simulation (DNS) modeling of PEFC electrodes: Part I. Regular microstructure , 2006 .

[9]  Wei Jiang,et al.  Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation. Part I. Current status of modeling research and model development , 2006 .

[10]  Antonio J. Martín,et al.  PEMFC electrode preparation by electrospray: Optimization of catalyst load and ionomer content , 2009 .

[11]  Hyoung-Juhn Kim,et al.  Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method , 2010 .

[12]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[13]  K. S. Dhathathreyan,et al.  Effect of Ionomer Content in Anode and Cathode Catalyst Layers on Direct Methanol Fuel Cell Performance , 2008 .

[14]  M. Valentini,et al.  Analytical Pore Scale Modeling of the Reactive Regions of Polymer Electrolyte Fuel Cells , 2003 .

[15]  Sandip Mazumder,et al.  Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance , 2008 .

[16]  Ay Su,et al.  Fuel cell performances at optimized Nafion and Ru85Se15 loadings in cathode catalyst layer , 2012 .

[17]  Michael Eikerling,et al.  Functionally graded cathode catalyst layers for polymer electrolyte fuel cells - I. Theoretical modeling , 2004 .

[18]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[19]  Xianguo Li,et al.  Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell , 1999 .

[20]  Ulrich Stimming,et al.  Proton Exchange Membrane Fuel Cell Model , 1995 .

[21]  Yoshio Kobayashi,et al.  Influence of Ionomer/Carbon Ratio on the Performance of a Polymer Electrolyte Fuel Cell , 2012 .

[22]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[23]  Jon G. Pharoah,et al.  A comparison of different approaches to modelling the PEMFC catalyst layer , 2008 .

[24]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[25]  D. H. Schwarz,et al.  3D Modeling of Catalyst Layers in PEM Fuel Cells Effects of Transport Limitations , 2007 .

[26]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[27]  Norman Munroe,et al.  PARAMETRIC MODEL OF AN INTERMEDIATE TEMPERATURE PEMFC , 2006 .

[28]  Hyunchul Ju,et al.  Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data , 2004 .

[29]  K. Scott,et al.  Numerical investigation of the optimal Nafion® ionomer content in cathode catalyst layer: An agglomerate two-phase flow modelling , 2014 .

[30]  T. Zawodzinski,et al.  Composition Dependence of the Pore Structure and Water Transport of Composite Catalyst Layers for Polymer Electrolyte Fuel Cells , 2013 .

[31]  Nathan P. Siegel,et al.  A two-dimensional computational model of a PEMFC with liquid water transport , 2004 .

[32]  Louis Gosselin,et al.  Optimal topology and distribution of catalyst in PEMFC , 2014 .

[33]  Suresh G. Advani,et al.  A Modified Agglomerate Model with Discrete Catalyst Particles for the PEM Fuel Cell Catalyst Layer , 2013 .

[34]  Chi-Yeong Ahn,et al.  Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells , 2013 .

[35]  C. Sealy The problem with platinum , 2008 .

[36]  Ned Djilali,et al.  CFD-based modelling of proton exchange membrane fuel cells , 2005 .

[37]  Alexandre K. da Silva,et al.  Optimal geometry of catalytic microreactors: Maximal reaction rate density with fixed amount of catalyst and pressure drop , 2012 .

[38]  Ralph E. White,et al.  Parameter Estimates for a PEMFC Cathode , 2004, 1308.4590.

[39]  G. Lindbergh,et al.  Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode , 2003 .

[40]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[41]  Anzhong Gu,et al.  Three dimensional, two phase flow mathematical model for PEM fuel cell: Part I. Model development , 2004 .

[42]  Xianguo Li,et al.  Effective transport properties for polymer electrolyte membrane fuel cells – With a focus on the gas diffusion layer , 2013 .

[43]  Marc Secanell,et al.  Characterization of the PEM Fuel Cell Catalyst Layer Microstructure by Nonlinear Least-Squares Parameter Estimation , 2012 .

[44]  S. Narasimhan,et al.  Multivariable optimization studies of cathode catalyst layer of a polymer electrolyte membrane fuel cell , 2011 .

[45]  E. Alper,et al.  Numerical assessment of dependence of polymer electrolyte membrane fuel cell performance on cathode catalyst layer parameters , 2011 .

[46]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[47]  G. Squadrito,et al.  Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance , 2001 .

[48]  L. Birry,et al.  The Influence of Pt Loading, Support and Nafion Content on the Performance of Direct Methanol Fuel Cells: Examined on the Example of the Cathode , 2011 .

[49]  Maria Forsyth,et al.  High Rates of Oxygen Reduction over a Vapor Phase–Polymerized PEDOT Electrode , 2008, Science.

[50]  S. Kaliaguine,et al.  Electrocatalyst synthesized from metal organic frameworks , 2013 .

[51]  G Sasikumar,et al.  Dependence of optimum Nafion content in catalyst layer on platinum loading , 2004 .

[52]  M. Wöhr,et al.  Dynamic modelling and simulation of a polymer membrane fuel cell including mass transport limitation , 1998 .

[53]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[54]  Fatemeh Hashemi,et al.  CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields , 2012, Math. Comput. Model..

[55]  Abdellatif Miraoui,et al.  Proton Exchange Membrane Fuel Cells Modeling: Gao/Proton Exchange Membrane Fuel Cells Modeling , 2012 .

[56]  Yuyan Shao,et al.  Nitrogen-doped graphene and its application in electrochemical biosensing. , 2010, ACS nano.