Topics on n-ary algebras

We describe the basic properties of two n-ary algebras, the Generalized Lie Algebras (GLAs) and, particularly, the Filippov (≡ n-Lie) algebras (FAs), and comment on their n-ary Poisson counterparts, the Generalized Poisson (GP) and Nambu-Poisson (N-P) structures. We describe the Filippov algebra cohomology relevant for the central extensions and infinitesimal deformations of FAs. It is seen that semisimple FAs do not admit central extensions and, moreover, that they are rigid. This extends the familiar Whitehead's lemma to all n ≥ 2 FAs, n = 2 being the standard Lie algebra case. When the n-bracket of the FAs is no longer required to be fully skewsymmetric one is lead to the n-Leibniz (or Loday's) algebra structure. Using that FAs are a particular case of n-Leibniz algebras, those with an anticommutative n-bracket, we study the class of n-Leibniz deformations of simple FAs that retain the skewsymmetry for the first n − 1 entires of the n-Leibniz bracket.

[1]  J. M. Izquierdo,et al.  On a class of n-Leibniz deformations of the simple Filippov algebras , 2010, 1009.2709.

[2]  J. M. Izquierdo,et al.  Contractions of Filippov algebras , 2010, 1009.0372.

[3]  J. A. Azcárraga,et al.  n-ary algebras: a review with applications , 2010, 1005.1028.

[4]  V. Kac,et al.  Classification of Simple Linearly Compact n-Lie Superalgebras , 2009, 0909.3284.

[5]  Bai Ruipu The Structure of n-Lie Algebras , 2010 .

[6]  Michel Goze,et al.  n-Lie algebras , 2009, 0909.1419.

[7]  S. Rey,et al.  Enhanced N=8 Supersymmetry of ABJM Theory on R**8 and R**8/Z(2) , 2009, 0906.3568.

[8]  J. M. Izquierdo,et al.  Cohomology of Filippov algebras and an analogue of Whitehead's lemma , 2009, 0905.3083.

[9]  V. Dotsenko,et al.  Superspace actions for multiple M2-branes, metric 3-algebras, and their classification , 2008, 0812.3127.

[10]  J. Bagger,et al.  Three-algebras and N=6 Chern-Simons gauge theories , 2008, 0807.0163.

[11]  Andreas Gustavsson One-loop corrections to Bagger–Lambert theory , 2008, 0805.4443.

[12]  J. Figueroa-O’Farrill Three lectures on 3-algebras , 2008, 0812.2865.

[13]  J. Maldacena,et al.  N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.

[14]  A. Fialowski,et al.  Leibniz algebra deformations of a Lie algebra , 2008, 0802.1263.

[15]  J. Bagger,et al.  Comments on multiple M2-branes , 2007, 0712.3738.

[16]  L. Takhtajan Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.

[17]  J. Bagger,et al.  Modeling multiple M2-branes , 2006, hep-th/0611108.

[18]  N. Hu,et al.  A cohomological characterization of Leibniz central extensions of Lie algebras , 2006, math/0605399.

[19]  R. Ushirobira,et al.  New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology , 2005, math/0507387.

[20]  M. Rotkiewicz Cohomology ring of n-Lie algebras. , 2005 .

[21]  C. Zachos,et al.  Classical and quantum Nambu mechanics , 2002, hep-th/0212267.

[22]  A. Vinogradov,et al.  Graded Multiple Analogs of Lie Algebras , 2002 .

[23]  J. Loday,et al.  Leibniz n-algebras , 2002 .

[24]  D. Minic,et al.  On the quantization of Nambu brackets , 1999, hep-th/9906248.

[25]  Murray R. Bremner,et al.  Identities for the Ternary Commutator , 1998 .

[26]  Philippe Gautheron Simple Facts Concerning Nambu Algebras , 1998 .

[27]  P. Michor,et al.  n-ary Lie and Associative Algebras , 1998, math/9801087.

[28]  A. Vinogradov,et al.  On multiple generalizations of Lie algebras and Poisson manifolds , 1998 .

[29]  Murray R. Bremner,et al.  Varieties of Anticommutativen-ary Algebras , 1997 .

[30]  J. M. Izquierdo,et al.  LETTER TO THE EDITOR: On the higher-order generalizations of Poisson structures , 1997, hep-th/9703019.

[31]  J. A. Azcárraga,et al.  Higher order simple Lie algebras , 1996, hep-th/9605213.

[32]  Yu. L. Daletskiǐ,et al.  Leibniz and Lie Algebra Structures for Nambu Algebra , 1997 .

[33]  Murray R. Bremner,et al.  Varieties of Anticommutative n-ary Algebras , 1997 .

[34]  J. M. Izquierdo,et al.  The Z2-graded Schouten–Nijenhuis bracket and generalized super-Poisson structures , 1996, hep-th/9612186.

[35]  J. A. Azcárraga,et al.  THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES , 1996, hep-th/9605067.

[36]  Philippe Gautheron Some remarks concerning Nambu mechanics , 1996 .

[37]  J. Loday,et al.  Leibniz Representations of Lie Algebras , 1996 .

[38]  J. A. Azcárraga,et al.  New generalized Poisson structures , 1996, q-alg/9601007.

[39]  P. Guha,et al.  On decomposability of Nambu-Poisson tensor. , 1996 .

[40]  P. Hanlon,et al.  On lie k-algebras , 1995 .

[41]  S. Kasymov Analogs of the cartan criteria forn-Lie algebras , 1995 .

[42]  A. V. Gnedbaye Les algèbres k-aires et leurs opérades , 1995 .

[43]  J.-L. Loday La renaissance des opérades , 1995 .

[44]  Teimuraz Pirashvili,et al.  Universal enveloping algebras of Leibniz algebras and (co)homology , 1993 .

[45]  J.-L. Loday Une version non commutative des algèbres de Lie : les algèbres de Leibniz , 1993 .

[46]  Sahoo,et al.  Nambu mechanics and its quantization. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[47]  S. Kasymov Theory of n-lie algebras , 1987 .

[48]  M. Burgin,et al.  LINEAR Ω-ALGEBRAS , 1975 .

[49]  A. G. Kurosh,et al.  MULTIOPERATOR RINGS AND ALGEBRAS , 1969 .

[50]  Murray Gerstenhaber,et al.  On the Deformation of Rings and Algebras , 1964 .

[51]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.