Topics on n-ary algebras
暂无分享,去创建一个
[1] J. M. Izquierdo,et al. On a class of n-Leibniz deformations of the simple Filippov algebras , 2010, 1009.2709.
[2] J. M. Izquierdo,et al. Contractions of Filippov algebras , 2010, 1009.0372.
[3] J. A. Azcárraga,et al. n-ary algebras: a review with applications , 2010, 1005.1028.
[4] V. Kac,et al. Classification of Simple Linearly Compact n-Lie Superalgebras , 2009, 0909.3284.
[5] Bai Ruipu. The Structure of n-Lie Algebras , 2010 .
[6] Michel Goze,et al. n-Lie algebras , 2009, 0909.1419.
[7] S. Rey,et al. Enhanced N=8 Supersymmetry of ABJM Theory on R**8 and R**8/Z(2) , 2009, 0906.3568.
[8] J. M. Izquierdo,et al. Cohomology of Filippov algebras and an analogue of Whitehead's lemma , 2009, 0905.3083.
[9] V. Dotsenko,et al. Superspace actions for multiple M2-branes, metric 3-algebras, and their classification , 2008, 0812.3127.
[10] J. Bagger,et al. Three-algebras and N=6 Chern-Simons gauge theories , 2008, 0807.0163.
[11] Andreas Gustavsson. One-loop corrections to Bagger–Lambert theory , 2008, 0805.4443.
[12] J. Figueroa-O’Farrill. Three lectures on 3-algebras , 2008, 0812.2865.
[13] J. Maldacena,et al. N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.
[14] A. Fialowski,et al. Leibniz algebra deformations of a Lie algebra , 2008, 0802.1263.
[15] J. Bagger,et al. Comments on multiple M2-branes , 2007, 0712.3738.
[16] L. Takhtajan. Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.
[17] J. Bagger,et al. Modeling multiple M2-branes , 2006, hep-th/0611108.
[18] N. Hu,et al. A cohomological characterization of Leibniz central extensions of Lie algebras , 2006, math/0605399.
[19] R. Ushirobira,et al. New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology , 2005, math/0507387.
[20] M. Rotkiewicz. Cohomology ring of n-Lie algebras. , 2005 .
[21] C. Zachos,et al. Classical and quantum Nambu mechanics , 2002, hep-th/0212267.
[22] A. Vinogradov,et al. Graded Multiple Analogs of Lie Algebras , 2002 .
[23] J. Loday,et al. Leibniz n-algebras , 2002 .
[24] D. Minic,et al. On the quantization of Nambu brackets , 1999, hep-th/9906248.
[25] Murray R. Bremner,et al. Identities for the Ternary Commutator , 1998 .
[26] Philippe Gautheron. Simple Facts Concerning Nambu Algebras , 1998 .
[27] P. Michor,et al. n-ary Lie and Associative Algebras , 1998, math/9801087.
[28] A. Vinogradov,et al. On multiple generalizations of Lie algebras and Poisson manifolds , 1998 .
[29] Murray R. Bremner,et al. Varieties of Anticommutativen-ary Algebras , 1997 .
[30] J. M. Izquierdo,et al. LETTER TO THE EDITOR: On the higher-order generalizations of Poisson structures , 1997, hep-th/9703019.
[31] J. A. Azcárraga,et al. Higher order simple Lie algebras , 1996, hep-th/9605213.
[32] Yu. L. Daletskiǐ,et al. Leibniz and Lie Algebra Structures for Nambu Algebra , 1997 .
[33] Murray R. Bremner,et al. Varieties of Anticommutative n-ary Algebras , 1997 .
[34] J. M. Izquierdo,et al. The Z2-graded Schouten–Nijenhuis bracket and generalized super-Poisson structures , 1996, hep-th/9612186.
[35] J. A. Azcárraga,et al. THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES , 1996, hep-th/9605067.
[36] Philippe Gautheron. Some remarks concerning Nambu mechanics , 1996 .
[37] J. Loday,et al. Leibniz Representations of Lie Algebras , 1996 .
[38] J. A. Azcárraga,et al. New generalized Poisson structures , 1996, q-alg/9601007.
[39] P. Guha,et al. On decomposability of Nambu-Poisson tensor. , 1996 .
[40] P. Hanlon,et al. On lie k-algebras , 1995 .
[41] S. Kasymov. Analogs of the cartan criteria forn-Lie algebras , 1995 .
[42] A. V. Gnedbaye. Les algèbres k-aires et leurs opérades , 1995 .
[43] J.-L. Loday. La renaissance des opérades , 1995 .
[44] Teimuraz Pirashvili,et al. Universal enveloping algebras of Leibniz algebras and (co)homology , 1993 .
[45] J.-L. Loday. Une version non commutative des algèbres de Lie : les algèbres de Leibniz , 1993 .
[46] Sahoo,et al. Nambu mechanics and its quantization. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[47] S. Kasymov. Theory of n-lie algebras , 1987 .
[48] M. Burgin,et al. LINEAR Ω-ALGEBRAS , 1975 .
[49] A. G. Kurosh,et al. MULTIOPERATOR RINGS AND ALGEBRAS , 1969 .
[50] Murray Gerstenhaber,et al. On the Deformation of Rings and Algebras , 1964 .
[51] Paul Adrien Maurice Dirac,et al. Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.