Integrated-optical Givens rotation device.

An elementary optical Givens rotation device is disclosed comprising a monolithic integrated optical circuit including crossed waveguides, interdigitated electrode means associated with the crossed waveguides at their crossing point, and electro-optic phase shifter means lying upstream and downstream of the interdigitated electrode means with respect to one of the waveguides. Two mutually coherent, transverse magnetic input light signals are guided simultaneously into each waveguide. A voltage applied to the interdigitated electrode means induces a diffraction grating thereby forming transmitted and diffracted light waves in output sections of the respective waveguides. Phase shifter means include means for applying voltages to each phase shifter which are equal in magnitude but opposite in sign so that the transmitted and diffracted waves combine in phase in one waveguide and combine 180° out of phase in the other waveguide. The device is useful for matrix triangularization by arranging arrays of these devices in a parallel or pipelined architecture on a substrate.

[1]  G. Eisenstein,et al.  4-Gb/s transmission experiment over 117 km of optical fiber using a Ti:LiNbO3external modulator , 1985, Journal of Lightwave Technology.

[2]  C C Guest,et al.  Phase stabilization system for holographic optical data processing. , 1985, Applied optics.

[3]  L. McCaughan Long Wavelength Titanium-Doped Lithium Niobate Directional Coupler Optical Switches And Switch Arrays , 1985 .

[4]  Steven K. Korotky,et al.  4Gb/s Transmission Experiment over 117km of Optical Fiber Using a Ti:LiNbO3 External Modulator , 1985 .

[5]  C. M. Verber Integrated Optical Architectures For Matrix Multiplication , 1985 .

[6]  Steven K. Korotky,et al.  Fully connectorized high-speed Ti:LiNbO 3 switch/modulator for time-division multiplexing and data encoding , 1985 .

[7]  Dynamics of optical TE to TM mode conversion in LiNbO3 channel waveguides , 1984 .

[8]  C C Guest,et al.  EXCLUSIVE OR processing (binary image subtraction) using thick Fourier holograms. , 1984, Applied optics.

[9]  J. E. Watson,et al.  Coupling of intersecting Ti:LiNbO3 diffused waveguides. , 1984, Applied optics.

[10]  C.M. Verber,et al.  Integrated-optical approaches to numerical optical processing , 1984, Proceedings of the IEEE.

[11]  R. Becker,et al.  Low-loss multiple-branching circuit in Ti-indiffused LiNbO(3)channel waveguides. , 1984, Optics letters.

[12]  T. Okoshi Recent progress in heterodyne/coherent optical-fiber communications , 1984 .

[13]  A. Neyer Electro-optic X-switch using single-mode Ti:LiNbO3 channel waveguides , 1983 .

[14]  R P Bocker,et al.  Electrooptical matrix multiplication using the twos complement arithmetic for improved accuracy. , 1983, Applied optics.

[15]  C. Verber,et al.  Design and performance of an integrated optical digital correlator , 1983 .

[16]  R. Alferness Waveguide Electrooptic Modulators , 1982 .

[17]  B. W. Davis,et al.  Guided waves and IR lasers , 1982 .

[18]  E. Philipp-Rutz,et al.  Electrooptic Bragg diffraction switches in a low cross-talk integrated-optic switching matrix , 1981, IEEE Journal of Quantum Electronics.

[19]  T K Gaylord,et al.  Thin and thick gratings: terminology clarification. , 1981, Applied optics.

[20]  C M Verber,et al.  Correlator based on an integrated optical spatial light modulator. , 1981, Applied optics.

[21]  L D Hutcheson,et al.  Comparison of bending losses in integrated optical circuits. , 1980, Optics letters.

[22]  C C Guest,et al.  Truth-table look-up optical processing utilizing binary and residue arithmetic. , 1980, Applied optics.

[23]  W S Chang,et al.  Electrooptical switching in thin film waveguides for a computer communication bus. , 1979, Applied optics.

[24]  M. S. Soskin,et al.  Dynamic holography and optical image processing , 1979 .

[25]  Bor‐Uei Chen,et al.  Bragg switch for optical channel waveguides , 1978 .

[26]  N. Kukhtarev,et al.  Geometric factors in the dynamic holographic conversion of light beams , 1978 .

[27]  V. B. Markov,et al.  holographic storage in electrooptic crystals. II. beam coupling—light amplification , 1978 .

[28]  H F Taylor,et al.  Losses at corner bends in dielectric waveguides. , 1977, Applied optics.

[29]  L B Stotts Integrated optical matrix multiplier. , 1976, Applied optics.

[30]  V. E. Wood,et al.  Integrated Optics Devices Utilizing Thick Phase Gratings , 1976 .

[31]  V. E. Wood,et al.  Large-angle optical switching in waveguides in LiNbO3 , 1976 .

[32]  J. Huignard,et al.  Coherent selective erasure of superimposed volume holograms in LiNbO3 , 1975 .

[33]  H F Taylor,et al.  Power loss at directional change in dielectric waveguides. , 1974, Applied optics.

[34]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[35]  O. E. Delange,et al.  Optical heterodyne experiments with enclosed transmission paths , 1968 .

[36]  Dennis Gabor,et al.  Optical image synthesis (complex amplitude addition and subtraction) by hollographic fourier transformation , 1965 .

[37]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[38]  W. Givens Computation of Plain Unitary Rotations Transforming a General Matrix to Triangular Form , 1958 .