Emergence of bimodality in controlling complex networks

Our ability to control complex systems is a fundamental challenge of contemporary science. Recently introduced tools to identify the driver nodes, nodes through which we can achieve full control, predict the existence of multiple control configurations, prompting us to classify each node in a network based on their role in control. Accordingly a node is critical, intermittent or redundant if it acts as a driver node in all, some or none of the control configurations. Here we develop an analytical framework to identify the category of each node, leading to the discovery of two distinct control modes in complex systems: centralized versus distributed control. We predict the control mode for an arbitrary network and show that one can alter it through small structural perturbations. The uncovered bimodality has implications from network security to organizational research and offers new insights into the dynamics and control of complex systems.

[1]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[2]  Guanrong Chen,et al.  Linear systems and optimal control , 1989, Springer series in information sciences.

[3]  R. Hidalgo,et al.  Conditions for the emergence of scaling in the inter-event time of uncorrelated and seasonal systems , 2006 .

[4]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[5]  Harry Eugene Stanley,et al.  Calling patterns in human communication dynamics , 2013, Proceedings of the National Academy of Sciences.

[6]  F. Stokman,et al.  Evolution of sociology freshmen into a friendship network , 2003 .

[7]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[8]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[10]  Kevin E. Bassler,et al.  Constructing and sampling directed graphs with given degree sequences , 2011, ArXiv.

[11]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[12]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[13]  Albert-László Barabási,et al.  Observability of complex systems , 2013, Proceedings of the National Academy of Sciences.

[14]  Enys Mones,et al.  Hierarchy Measure for Complex Networks , 2012, PloS one.

[15]  Christian Commault,et al.  Sensor classification for the fault detection and isolation, a structural approach , 2011 .

[16]  J. Kurths,et al.  Identifying Controlling Nodes in Neuronal Networks in Different Scales , 2012, PloS one.

[17]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[18]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[19]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[20]  Neo D. Martinez Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web , 1991 .

[21]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[22]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[23]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[24]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[25]  A. Barabasi,et al.  Analysis of a large-scale weighted network of one-to-one human communication , 2007, physics/0702158.

[26]  Dunja Mladenic,et al.  Proceedings of the 3rd international workshop on Link discovery , 2005, KDD 2005.

[27]  Albert-László Barabási,et al.  Effect of correlations on network controllability , 2012, Scientific Reports.

[28]  Mehran Mesbahi,et al.  Dynamics and control of state-dependent networks for probing genomic organization , 2011, Proceedings of the National Academy of Sciences.

[29]  Robert L. Grossman,et al.  Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , 2005, KDD 2005.

[30]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[31]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[32]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[33]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[34]  B. Bollobás The evolution of random graphs , 1984 .

[35]  Christian Commault,et al.  Generic properties and control of linear structured systems: a survey , 2003, Autom..

[36]  K. Goh,et al.  Universal behavior of load distribution in scale-free networks. , 2001, Physical review letters.

[37]  Andrew Parker,et al.  The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations , 2004 .

[38]  Y. Lai,et al.  Optimizing controllability of complex networks by minimum structural perturbations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Lin Gao,et al.  Control range: a controllability-based index for node significance in directed networks , 2012 .

[40]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[41]  Tamás Vicsek,et al.  Controlling edge dynamics in complex networks , 2011, Nature Physics.

[42]  Endre Csóka,et al.  Core percolation on complex networks , 2012, Physical review letters.

[43]  L. Aravind,et al.  Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. , 2006, Journal of molecular biology.

[44]  Albert-László Barabási,et al.  Control Centrality and Hierarchical Structure in Complex Networks , 2012, PloS one.

[45]  Lenka Zdeborová,et al.  The number of matchings in random graphs , 2006, ArXiv.

[46]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[47]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[48]  Julio Collado-Vides,et al.  RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation , 2007, Nucleic Acids Res..

[49]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[50]  Cunlai Pu,et al.  Robustness analysis of network controllability , 2012 .

[51]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[52]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[53]  Jie Ren,et al.  Controlling complex networks: How much energy is needed? , 2012, Physical review letters.

[54]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[55]  G. Vinnicombe,et al.  Fundamental limits on the suppression of molecular fluctuations , 2010, Nature.

[56]  S. Redner Citation statistics from 110 years of physical review , 2005, physics/0506056.

[57]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[58]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[59]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[60]  Massimiliano Zanin,et al.  Targeting the dynamics of complex networks , 2012, Scientific Reports.

[61]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[62]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[63]  B. Kahng,et al.  Intrinsic degree-correlations in the static model of scale-free networks , 2006 .

[64]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.