Combustion synthesis of ultra-high-temperature materials based on (Hf,Ta)B2. Part 1: The mechanisms of combustion and structure formation

[1]  E. Levashov,et al.  SHS Processing and Consolidation of Ta–Ti–C, Ta–Zr–C, and Ta–Hf–C Carbides for Ultra‐High‐Temperatures Application , 2018 .

[2]  C. Weinberger,et al.  Phase, hardness, and deformation slip behavior in mixed Hf x Ta 1-x C , 2018 .

[3]  E. Levashov,et al.  Self-propagating high-temperature synthesis of refractory boride ceramics (Zr,Ta)B2 with superior properties , 2017 .

[4]  E. Levashov,et al.  Self-propagating high-temperature synthesis of advanced materials and coatings , 2017 .

[5]  E. Levashov,et al.  Conditions for fabricating single-phase (Ta, Zr)C carbide by SHS from mechanically activated reaction mixtures , 2016 .

[6]  E. Levashov,et al.  Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures , 2015 .

[7]  Axel van de Walle,et al.  Prediction of the material with highest known melting point from ab initio molecular dynamics calculations , 2015 .

[8]  A. Mukasyan,et al.  Combustion for Material Synthesis , 2014 .

[9]  C. Nan,et al.  Oxidation Behaviors of C–ZrB2–SiC Composite at 2100 °C in Air and O2 , 2014 .

[10]  F. Golestani-Fard,et al.  Diffusion and solid solution formation between the binary carbides of TaC, HfC and ZrC , 2013 .

[11]  H. J. Wang,et al.  A comparative study on combustion synthesis of Ta–B compounds , 2011 .

[12]  Q. Zeng,et al.  Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study , 2010 .

[13]  Xiaohong Wang,et al.  Effects of boron addition on the formation of MoSi2 by combustion synthesis mode , 2010 .

[14]  Wei Sun,et al.  ZrC ablation protective coating for carbon/carbon composites , 2009 .

[15]  D. Sciti,et al.  Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite , 2009 .

[16]  E. Levashov,et al.  Combustion and structure formation in the mechanoactivated Cr-B system , 2008 .

[17]  W. Chen,et al.  Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites , 2007 .

[18]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[19]  V. Manukyan Influence of Molybdenum and Boron Oxides on Combustion in the Mo-B Gasless System , 2006 .

[20]  E. Levashov,et al.  Obtaining the Composite MoB Material by Means of Force SHS Compacting with Preliminary Mechanical Activation of Moñ10 % B Mixture , 2005 .

[21]  A. Sayir Carbon fiber reinforced hafnium carbide composite , 2004 .

[22]  E. Opila,et al.  Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions , 2004 .

[23]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[24]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[25]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[26]  J. Bull,et al.  Ultra-High Temperature Ceramics , 1994 .

[27]  I. Yuranov,et al.  A DMS kinetic study of the boron oxides vapor in the combustion front of SHS system Mo + B , 1994 .

[28]  A. N. Jette,et al.  Oxidation mechanisms of hafnium carbide and hafnium diboride in the temperature range 1400 to 2100 C , 1993 .

[29]  Z. A. Munir,et al.  Synthesis of molybdenum silicides by the self-propagating combustion method , 1991, Journal of Materials Science.

[30]  I. Borovinskaya,et al.  Mechanism of mass transfer with combustion of the SHS-system Mo + B , 1991 .

[31]  H. H. Davis,et al.  Effect of an SiC addition on the oxidation of ZrB , 1973 .

[32]  G. Jangg,et al.  Gewinnung von mischkarbiden aus dem hilfsmetallbad , 1968 .

[33]  J. Berkowitz‐Mattuck High‐Temperature Oxidation III . Zirconium and Hafnium Diborides , 1966 .

[34]  A. I. Avgustinik,et al.  STRUCTURE OF THE ALLOYS OF THE Zr-C-Ta SYSTEM , 1966 .