Large scale atomistic polymer simulations using Monte Carlo methods for parallel vector processors

Abstract In this paper we discuss the implementation of advanced variable connectivity Monte Carlo (MC) simulation methods for studying large (>105 atom) polymer systems at the atomic level. Such codes are intrinsically difficult to optimize since they involve a mixture of many different elementary MC steps, such as reptation, flip, end rotation, concerted rotation and volume fluctuation moves. In particular, connectivity altering MC moves, such as the recently developed directed end bridging (DEB) algorithm, are required in order to vigorously sample the configuration space. Techniques for effective vector implementation of such moves are described. We also show how a simple domain decomposition method can provide a general and efficient means of parallelizing these complex MC protocols. Benchmarks are reported for a 192,000 atom simulation of polydisperse linear polyethylene with an average chain length C6000, for simulations using 1 to 8 processors and a variety of MC protocols.

[1]  M. Natália D. S. Cordeiro,et al.  Parallel Implementation of a Monte Carlo Molecular Simulation Program , 2000, J. Chem. Inf. Comput. Sci..

[2]  I. R. Mcdonald,et al.  Monte Carlo calculations for one- and two-component fluids in the isothermal-isobaric ensemble , 1969 .

[3]  E. V. Krishnamurthy,et al.  Parallel processing - principles and practice , 1989, International computer science series.

[4]  Grant S. Heffelfinger,et al.  A comparison between two massively parallel algorithms for Monte Carlo computer simulation: An investigation in the grand canonical ensemble , 1996 .

[5]  Klaus Schulten,et al.  Performance analysis of a parallel molecular dynamics program , 1994 .

[6]  J. Ilja Siepmann,et al.  Self-Adapting Fixed-End-Point Configurational-Bias Monte Carlo Method for the Regrowth of Interior Segments of Chain Molecules with Strong Intramolecular Interactions , 2000 .

[7]  Michael W. Deem,et al.  Recent contributions of statistical mechanics in chemical engineering , 1998 .

[8]  D. J. Wallace,et al.  Concurrency and parallelism in MC and MD simulations in physics , 1985 .

[9]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[10]  Michael W. Deem,et al.  Efficient Monte Carlo methods for cyclic peptides , 1999 .

[11]  Juan J. de Pablo,et al.  A new method for generating volume changes in isobaric‐isothermal Monte Carlo simulations of flexible molecules , 1995 .

[12]  Fernando A. Escobedo,et al.  A configurational-bias approach for the simulation of inner sections of linear and cyclic molecules , 2000 .

[13]  Julia M. Goodfellow,et al.  Parallelization strategies for molecular simulation using the Monte Carlo algorithm , 1993, J. Comput. Chem..

[14]  Alfred Uhlherr,et al.  Monte Carlo Conformational Sampling of the Internal Degrees of Freedom of Chain Molecules , 2000 .

[15]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[16]  Bruce Hendrickson,et al.  A new parallel method for molecular dynamics simulation of macromolecular systems , 1996 .

[17]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[18]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.

[19]  Albert H. Widmann,et al.  Parallelization of a Monte Carlo algorithm for the simulation of polymer melts , 1995 .

[20]  Paolo Corradini,et al.  A computer model of molecular arrangement in a n‐paraffinic liquid , 1980 .

[21]  Doros N. Theodorou,et al.  Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts , 1995 .

[22]  Clementi,et al.  Eddy formation in obstructed fluid flow: A molecular-dynamics study. , 1986, Physical review letters.

[23]  Travis D. Boone,et al.  End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains , 1999 .

[24]  Michael W. Deem,et al.  Strict detailed balance is unnecessary in Monte Carlo simulation , 1999 .

[25]  Vlasis G. Mavrantzas,et al.  Atomistic Monte Carlo simulation of steady‐state uniaxial elongational flow of long‐chain polyethylene melts: dependence of the melt degree of orientation on stress, molecular length and elongational strain rate , 2000 .

[26]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[27]  Grant S. Heffelfinger,et al.  Parallel atomistic simulations , 2000 .

[28]  Wilfried Oed,et al.  Structural and thermodynamic properties of interfaces between coexisting phases in polymer blends: a Monte Carlo simulation , 1995 .

[29]  David Handscomb Simulation of order transitions on a parallel computer , 1998 .

[30]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[31]  Barkema,et al.  Parallel simulation of the Ising model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Berend Smit,et al.  Novel scheme to study structural and thermal properties of continuously deformable molecules , 1992 .

[33]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[34]  Takao Yamazaki,et al.  A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines , 1993 .

[35]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[36]  Albert H. Widmann,et al.  Monte Carlo algorithms for the atomistic simulation of condensed polymer phases , 1995 .

[37]  Esselink,et al.  Parallel Monte Carlo simulations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.