Machine-Learning Dessins d'Enfants: Explorations via Modular and Seiberg-Witten Curves
暂无分享,去创建一个
[1] Yang-Hui He,et al. Dessins d’enfants in N=2$$ \mathcal{N}=2 $$ generalised quiver theories , 2015, 1503.06418.
[2] R. Vidunas,et al. Genus one Belyi maps by quadratic correspondences , 2017, International Journal of Mathematics.
[3] R. Debuchy,et al. What is a , 1997 .
[4] Nikhil Buduma,et al. Fundamentals of deep learning , 2017 .
[5] Vishnu Jejjala,et al. INVARIANTS OF TORIC SEIBERG DUALITY , 2011, 1107.4101.
[6] Fabian Ruehle. Data science applications to string theory , 2020 .
[7] Michele Banko,et al. Mitigating the Paucity-of-Data Problem: Exploring the Effect of Training Corpus Size on Classifier Performance for Natural Language Processing , 2001, HLT.
[8] Yang-Hui He,et al. N=2 gauge theories: Congruence subgroups, coset graphs, and modular surfaces , 2012, 1201.3633.
[9] Fabian Ruehle. Evolving neural networks with genetic algorithms to study the string landscape , 2017, 1706.07024.
[10] Andrea Baronchelli,et al. Machine Learning meets Number Theory: The Data Science of Birch-Swinnerton-Dyer , 2019, ArXiv.
[11] Sabri Boughorbel,et al. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric , 2017, PloS one.
[12] Y. Kimura. Nongeometric heterotic strings and dual F-theory with enhanced gauge groups , 2018, Journal of High Energy Physics.
[13] Vishnu Jejjala,et al. Toric CFTs, permutation triples, and Belyi pairs , 2010, 1012.2351.
[14] Chen Sun,et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).
[15] 志村 五郎,et al. Introduction to the arithmetic theory of automorphic functions , 1971 .
[16] Vishnu Jejjala,et al. The beta ansatz: a tale of two complex structures , 2011, 1104.5490.
[17] Burt A. Ovrut,et al. Machine Learning Calabi–Yau Metrics , 2019 .
[18] F. Klein. Ueber die Transformation elfter Ordnung der elliptischen Functionen , 1879 .
[19] Modular subgroups, dessins d’enfants and elliptic K3 surfaces , 2012, 1211.1931.
[20] Ulf Persson,et al. Configurations of In fibers on elliptic K 3 surfaces , 1989 .
[21] D. Krefl,et al. Machine Learning of Calabi-Yau Volumes : arXiv , 2017, 1706.03346.
[22] Yang-Hui He,et al. Machine-learning the string landscape , 2017 .
[23] Zhi Hu,et al. Yang-Mills Theory and the ABC Conjecture , 2016, 1602.01780.
[24] Gauge symmetries and matter fields in $\mathrm{F}$-theory models without section — compactifications on double cover and Fermat quartic $\mathrm{K}3$ constructions times $\mathrm{K}3$ , 2016, 1603.03212.
[25] Sebastian Ruder,et al. An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.
[26] N. Seiberg,et al. Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .
[27] Gauge theories from toric geometry and brane tilings , 2005, hep-th/0505211.
[28] Children’s drawings from Seiberg–Witten curves , 2006, hep-th/0611082.
[29] Yang-Hui He,et al. The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning , 2018, 1812.02893.
[30] William H. Offenhauser,et al. Wild Boars as Hosts of Human-Pathogenic Anaplasma phagocytophilum Variants , 2012, Emerging infectious diseases.
[31] Jean-Pierre Chauveau,et al. Esquisse d'un programme , 1982 .
[32] Yuji Tachikawa. N=2 Supersymmetric Dynamics for Pedestrians , 2013, 1312.2684.
[33] Callum R. Brodie,et al. Machine Learning Line Bundle Cohomology , 2019, Fortschritte der Physik.
[34] F. Beukers,et al. Number Theory and Polynomials: Explicit calculation of elliptic fibrations of K 3-surfaces and their Belyi-maps , 2008 .
[35] A. Sebbar. Classification of torsion-free genus zero congruence groups , 2001 .