Simplicial branching random walks and their applications

We define a new stochastic process on general simplicial complexes which allows to study their spectral and homological properties. Some results for random walks on graphs are shown to hold in this general setting. As an application, the process is used to calculate the spectral measure of high-dimensional analogues of regular trees and to construct solutions to the high-dimensional Dirichlet problem for forms.

[1]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[2]  D. Kozlov The threshold function for vanishing of the top homology group of random $d$-complexes , 2009, 0904.1652.

[3]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[4]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[5]  Anna Gundert,et al.  On eigenvalues of random complexes , 2014, ArXiv.

[6]  Alexander Lubotzky,et al.  Mixing Properties and the Chromatic Number of Ramanujan Complexes , 2014, 1407.7700.

[7]  Nathan Linial,et al.  On the phase transition in random simplicial complexes , 2014, 1410.1281.

[8]  R. Meshulam,et al.  Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.

[9]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[10]  Konstantin Golubev,et al.  Spectrum and combinatorics of Ramanujan triangle complexes , 2014 .

[11]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[12]  Art M. Duval,et al.  Simplicial matrix-tree theorems , 2008, 0802.2576.

[13]  Jirí Matousek,et al.  On Gromov’s Method of Selecting Heavily Covered Points , 2011, Discret. Comput. Geom..

[14]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[15]  Sayan Mukherjee,et al.  Random walks on simplicial complexes and harmonics† , 2013, Random Struct. Algorithms.

[16]  Gil Kalai,et al.  Enumeration ofQ-acyclic simplicial complexes , 1983 .

[17]  Anna Gundert,et al.  Higher Dimensional Cheeger Inequalities , 2014, SoCG.

[18]  J. Jost,et al.  Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.

[19]  Uli Wagner,et al.  Minors in random and expanding hypergraphs , 2011, SoCG '11.

[20]  Matthew Kahle,et al.  Spectral Gaps of Random Graphs and Applications , 2012, International Mathematics Research Notices.

[21]  Roy Meshulam,et al.  Random Latin squares and 2-dimensional expanders , 2013, 1307.3582.

[22]  Patrick Solé,et al.  Ramanujan geometries of type Ãn , 2003, Discret. Math..

[23]  Wen-Ching Winnie Li Ramanujan hypergraphs , 2004 .

[24]  Tali Kaufman,et al.  Isoperimetric Inequalities for Ramanujan Complexes and Topological Expanders , 2014, ArXiv.

[25]  Ori Parzanchevski,et al.  Isoperimetric inequalities in simplicial complexes , 2012, Comb..