Corrigendum: High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

[1]  O. Schmidt,et al.  High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots , 2015, Nature Communications.

[2]  F Schmidt,et al.  Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography , 2015, Nature Communications.

[3]  T. Ohshima,et al.  Single-photon emitting diode in silicon carbide , 2015, Nature Communications.

[4]  I. Daruka,et al.  Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. , 2014, Physical review letters.

[5]  P. Bhattacharya,et al.  Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot , 2014 .

[6]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[7]  Dan Dalacu,et al.  Observation of strongly entangled photon pairs from a nanowire quantum dot , 2014, Nature Communications.

[8]  O. Schmidt,et al.  Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. , 2014, Nano letters.

[9]  I. Sagnes,et al.  Deterministic and electrically tunable bright single-photon source , 2014, Nature Communications.

[10]  D. Ritchie,et al.  Quantum teleportation of laser-generated photons with an entangled-light-emitting diode , 2013, Nature Communications.

[11]  O. Schmidt,et al.  A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode. , 2013, Nano letters.

[12]  K. Jöns,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, Nature Photonics.

[13]  L. Mereni,et al.  Towards quantum-dot arrays of entangled photon emitters , 2013, Nature Photonics.

[14]  D. Ritchie,et al.  Quantum teleportation using a light-emitting diode , 2013, Nature Photonics.

[15]  O. Schmidt,et al.  Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. , 2012, Physical review letters.

[16]  R. Trotta,et al.  Nanomembrane Quantum‐Light‐Emitting Diodes Integrated onto Piezoelectric Actuators , 2012, Advanced materials.

[17]  Toshiharu Makino,et al.  Electrically driven single-photon source at room temperature in diamond , 2012, Nature Photonics.

[18]  Hideo Ohno,et al.  Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field , 2012, Nature Communications.

[19]  R. M. Stevenson,et al.  Electric-field-induced coherent coupling of the exciton states in a single quantum dot , 2010, 1203.5909.

[20]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[21]  D. Ritchie,et al.  An entangled-light-emitting diode , 2010, Nature.

[22]  D. Ritchie,et al.  Bell-inequality violation with a triggered photon-pair source. , 2008, Physical review letters.

[23]  Gregor Weihs,et al.  Time-bin entangled photons from a quantum dot , 2008, Nature Communications.

[24]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[25]  D. Gershoni,et al.  Entanglement on demand through time reordering , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[26]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[27]  D. Ritchie,et al.  Coherence of an entangled exciton-photon state. , 2007, Physical review letters.

[28]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[29]  Yasuhiko Arakawa,et al.  A gallium nitride single-photon source operating at 200 K , 2006, Nature materials.

[30]  D. Ritchie,et al.  Electrically addressing a single self-assembled quantum dot , 2006, quant-ph/0612046.

[31]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[32]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical review letters.

[33]  M. S. Skolnick,et al.  Inversion of exciton level splitting in quantum dots , 2005, quant-ph/0601198.

[34]  J. Tian,et al.  Cut directions for the optimization of piezoelectric coefficients of lead magnesium niobate–lead titanate ferroelectric crystals , 2005 .

[35]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[36]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[37]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[38]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[39]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[40]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[41]  Gammon,et al.  Fine structure splitting in the optical spectra of single GaAs quantum dots. , 1996, Physical review letters.

[42]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[43]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[44]  T. Ohshima,et al.  A silicon carbide room-temperature single-photon source. , 2013, Nature materials.

[45]  P. Michler Single Semiconductor Quantum Dots , 2009 .