MMOs in Mechanical and Transport Systems

[1]  Robert Bogue,et al.  Graphene sensors: a review of recent developments , 2014 .

[2]  Simon Iwnicki,et al.  Vehicle dynamics and the wheel/rail interface , 2002 .

[3]  W. Marszalek,et al.  Periodic solutions of daes with applications to dissipative electric circuits , 2006 .

[4]  Krzysztof Zboinski,et al.  Bifurcation approach to the influence of rolling radius modelling and rail inclination on the stability of railway vehicles in a curved track , 2008 .

[5]  W. Blajer A geometrical interpretation and uniform matrix formulation of multibody system dynamics , 2001 .

[6]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[7]  J. Santamaria,et al.  Influence of creep forces on the risk of derailment of railway vehicles , 2009 .

[8]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[9]  Jerzy Piotrowski,et al.  A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations , 2008 .

[10]  Anna Orlova,et al.  Tuning von Güterwagendrehgestellen durch Radsatzkopplungen , 2002 .

[11]  Clarence W. de Silva,et al.  Vibration and Shock Handbook , 2005 .

[12]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[13]  E. Zerz Topics in Multidimensional Linear Systems Theory , 2000 .

[14]  A. Croy,et al.  Nonlinear Damping in Graphene Resonators , 2012, 1204.0911.

[15]  W. Marszalek,et al.  Properties of memristive circuits with mixed-mode oscillations , 2015 .

[16]  D. T. Greenwood,et al.  Advanced Dynamics: Frontmatter , 2003 .

[17]  Utz von Wagner,et al.  Nonlinear Dynamic Behaviour of a Railway Wheelset , 2009 .

[18]  Michaël J.M.M. Steenbergen,et al.  Modelling of wheels and rail discontinuities in dynamic wheel–rail contact analysis , 2006 .

[19]  Reinhold von Schwerin MultiBody System SIMulation - Numerical Methods, Algorithms, and Software , 1999, Lecture Notes in Computational Science and Engineering.

[21]  Hugo Bachmann,et al.  Vibration problems in structures , 1995 .

[22]  W. Marszalek,et al.  Computing periodic solutions of linear differential-algebraic systems with nonsinusoidal excitations , 2006 .

[23]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[24]  Z. Trzaska One-period energy in dynamical systems with periodic discontinuous excitations , 2007 .

[25]  Yann Bezin,et al.  The effect of dynamic rail roll on the wheel–rail contact conditions , 2008 .

[26]  G. Schupp Computational Bifurcation Analysis: An Efficient Method for Studying Stationary and Periodic Motions , 2004 .

[27]  J. G. Giménez,et al.  Non-steady state modelling of wheel-rail contact problem for the dynamic simulation of railway vehicles , 2008 .

[28]  Simon Iwnicki,et al.  Handbook of railway vehicle dynamics , 2006 .

[29]  V. K. Chandrasekar,et al.  Influence of dissipation on extreme oscillations of a forced anharmonic oscillator , 2020, 2008.13172.

[30]  R. Minikayev,et al.  Structure and Electrical Resistivity Dependence of Molybdenum Thin Films Deposited by DC Modulated Pulsed Magnetron Sputtering , 2023, Archives of Metallurgy and Materials.

[31]  Robert L. Borrelli,et al.  Differential Equations: A Modeling Perspective , 1987 .

[32]  Gunter Schupp,et al.  Modelling the Contact Between Wheel and Rail Within Multibody System Simulation , 2004 .

[33]  Ahmed A. Shabana,et al.  Development of elastic force model for wheel/rail contact problems , 2004 .

[34]  Z. Trzaska Mixed mode oscillations in an electrochemical reactor , 2018, Applied Chemical Engineering.