A Time-Space Collocation Spectral Approximation for a Class of Time Fractional Differential Equations

A numerical scheme is presented for a class of time fractional differential equations with Dirichlet's and Neumann's boundary conditions. The model solution is discretized in time and space with a spectral expansion of Lagrange interpolation polynomial. Numerical results demonstrate the spectral accuracy and efficiency of the collocation spectral method. The technique not only is easy to implement but also can be easily applied to multidimensional problems.

[1]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[2]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[3]  Fawang Liu,et al.  Analytical solution for the time-fractional telegraph equation by the method of separating variables , 2008 .

[4]  B. Guo,et al.  General solutions to a class of time fractional partial differential equations , 2010 .

[5]  W. Wyss The fractional diffusion equation , 1986 .

[6]  Fawang Liu,et al.  The time fractional diffusion equation and the advection-dispersion equation , 2005, The ANZIAM Journal.

[7]  Charles Tadjeran,et al.  Finite di$erence approximations for fractional advection-dispersion &ow equations , 2004 .

[8]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[9]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[10]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[11]  Emmanuel Hanert,et al.  A comparison of three Eulerian numerical methods for fractional-order transport models , 2010 .

[12]  Francesco Mainardi,et al.  On Mittag-Leffler-type functions in fractional evolution processes , 2000 .

[13]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[14]  E. Hanert On the numerical solution of space–time fractional diffusion models , 2011 .

[15]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[16]  Nabil T. Shawagfeh,et al.  Analytical approximate solutions for nonlinear fractional differential equations , 2002, Appl. Math. Comput..

[17]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[18]  I. Podlubny Fractional differential equations , 1998 .

[19]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[20]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..