Phase formation in molybdenum disilicide powders during in-flight induction plasma treatment

The in-flight modification of MoSi{sub 2} powders has been carried out by using an Ar{endash}H{sub 2} induction plasma. Reactor pressure, powder feed rate, and plate power level were taken as the experimental parameters to alter the thermal history of the injected powder particles. Metastable hexagonal structure of {beta}{endash}MoSi{sub 2} is the major phase observed in the Ar{endash}H{sub 2} induction of plasma-treated molybdenum disilicide powders, while the stable phase of tetragonal structure of {alpha}{endash}MoSi{sub 2} usually retains no less than 30 wt.{percent}. Depending on the experimental condition and the deviation from stoichiometry in raw materials, low silicides, Mo{sub 5}Si{sub 3} and Mo{sub 3}Si, and free Si were observed. {copyright} {ital 1997 Materials Research Society.}

[1]  T. Ishigaki,et al.  Critical free energy for nucleation from the congruent melt of MoSi2 , 1997 .

[2]  Takayuki Watanabe,et al.  Thermal plasma treatment of titanium carbide powders: Part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment , 1996 .

[3]  Takayuki Watanabe,et al.  Thermal plasma treatment of titanium carbide powders: Part I. Numerical analysis of powder behavior in argon-hydrogen and argon-nitrogen radio frequency plasmas , 1996 .

[4]  Ronald W. Smith,et al.  Thermal spraying I: Powder consolidation—From coating to forming , 1995 .

[5]  S. Nutt,et al.  Reactive synthesis and characterization of using low-pressure plasma deposition and 100% methane , 1995 .

[6]  J. Tanaka,et al.  Compositional modification of titanium carbide powders by induction plasma treatment , 1995 .

[7]  H. Kung,et al.  The structure of plasma sprayed MoSi2-Al2O3 microlaminate tubes , 1995 .

[8]  J. Subrahmanyam Combustion synthesis of MoSi_2-Mo_5Si_3 composites , 1994 .

[9]  C. Schetelich,et al.  Computer‐aided evaluation of kossel patterns obtained from quasicrystals , 1994 .

[10]  A. Heuer,et al.  Precipitation of Mo5Si3 in MoSi2 , 1993 .

[11]  Y. Bando,et al.  Deposition from the vapour phase during induction plasma treatment of alumina powders , 1993, Journal of Materials Science.

[12]  E. Lavernia,et al.  Low-pressure plasma deposition of SiC-reinforced MoSi2 , 1993 .

[13]  A. Rollett,et al.  Ductile phase toughening of molybdenum disilicide by low pressure plasma spraying , 1992 .

[14]  H. Herman,et al.  Vacuum plasma spraying of MoSi2 and its composites , 1992 .

[15]  A. Vasudévan,et al.  A comparative overview of molybdenum disilicide composites , 1992 .

[16]  W. Boettinger,et al.  Application of ternary phase diagrams to the development of MoSi2-based materials , 1992 .

[17]  T. Nieh,et al.  Phase transformation and mechanical properties of thin MoSi2 films produced by sputter deposition , 1992 .

[18]  T. Mitchell,et al.  {112} 〈111〉 twins in tetragonal MoSi2 , 1992 .

[19]  M. Boulos RF induction plasma spraying: State-of-the-art review , 1992 .

[20]  Y. Chiang,et al.  Liquid‐Phase Reaction‐Bonding of Silicon Carbide Using Alloyed Silicon‐Molybdenum Melts , 1990 .

[21]  G. Beddies,et al.  Influence of the substrate temperature on the properties of MoSi2 thin films , 1987 .

[22]  Pierre Proulx,et al.  Heating of powders in an r.f. inductively coupled plasma under dense loading conditions , 1987 .

[23]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[24]  M. Boulos The inductively coupled R.F. (radio frequency) plasma , 1985 .

[25]  L. H. Bennett,et al.  Alloy phase diagrams , 1984 .

[26]  F. Chung Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures , 1974 .