Chemical Identity of Cuticular Lipid Components in the Mimetic Swallowtail Butterfly Papilio polytes

The swallowtail Papilio polytes shows Batesian and female‐limited polymorphic mimicry. In Japan, P. polytes females have two different forms: the cyrus form is non‐mimetic and resembles males, whereas the polytes form mimics Pachliopta aristolochiae and Byasa (Atrophaneura) alcinous as unpalatable models. During mating, P. polytes males use cuticular lipids to distinguish non‐mimetic females from conspecific males and sympatric sister species. In this study, we investigated whether compositional differences in cuticular lipids exist between mimetic and non‐mimetic females of P. polytes and between mimetic females and their model species. The mimetic and non‐mimetic females had nearly identical cuticular lipid profiles, which differed from those of males. The two model species exhibited sexually dimorphic and species‐specific cuticular lipid compositions, which were distinctly different from those of mimetic P. polytes females. These results strongly suggest that P. polytes females maintain the identity of cuticular lipid profiles regardless of the mimicry type, and this feature helps males recognize mimetic females as the correct mating partners.

[1]  S. Ohta,et al.  Variation in cuticular lipid profiles of black butterflies of the genus Papilio in Japan , 2021 .

[2]  Karin R. L. van der Burg,et al.  Seasonal plasticity: how do butterfly wing pattern traits evolve environmental responsiveness? , 2021, Current opinion in genetics & development.

[3]  S. Ohta,et al.  The male swallowtail butterfly, Papilio polytes, uses cuticular hydrocarbons for mate discrimination , 2020, Animal Behaviour.

[4]  C. Jiggins,et al.  Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies , 2019, bioRxiv.

[5]  M. Kronforst,et al.  Behaviour before beauty: signal weighting during mate selection in the butterfly Papilio polytes. , 2019, Ethology : formerly Zeitschrift fur Tierpsychologie.

[6]  H. Takasaki,et al.  Uncertainty about flying conspecifics causes territorial contests of the Old World swallowtail, Papilio machaon , 2019, Frontiers in Zoology.

[7]  K. Tsuji,et al.  Evidence for frequency‐dependent selection maintaining polymorphism in the Batesian mimic Papilio polytes in multiple islands in the Ryukyus, Japan , 2019, Ecology and evolution.

[8]  M. Kronforst,et al.  Experimental field tests of Batesian mimicry in the swallowtail butterfly Papilio polytes , 2018, Ecology and evolution.

[9]  M. Kronforst,et al.  Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? , 2018, Behavioural Processes.

[10]  K. Tsuji,et al.  Rapid evolution of a Batesian mimicry trait in a butterfly responding to arrival of a new model , 2017, Scientific Reports.

[11]  M. Mokkonen,et al.  The evolutionary ecology of deception , 2016, Biological reviews of the Cambridge Philosophical Society.

[12]  T. Nehira,et al.  New oxygenated himachalenes in male-specific odor of the Chinese windmill butterfly, Byasa alcinous alcinous , 2016, Natural product research.

[13]  L. Vaníčková,et al.  Identification and field and laboratory tests of the sex pheromone of Cerconota anonella Sepp. (Lepidoptera: Oecophoridae) , 2016 .

[14]  M. Imafuku,et al.  Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes , 2015, Proceedings of the Royal Society B: Biological Sciences.

[15]  S. Heuskin,et al.  The composition of cuticular compounds indicates body parts, sex and age in the model butterfly Bicyclus anynana (Lepidoptera) , 2014, Front. Ecol. Evol..

[16]  D. Pfennig,et al.  Competition and the evolution of imperfect mimicry , 2012 .

[17]  K. Honda,et al.  Sexual Dimorphism in Scent Substances and Cuticular Lipids of Adult Papilio protenor Butterflies , 2012, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[18]  D. Kemp,et al.  The Role of Coloration in Mate Choice and Sexual Interactions in Butterflies , 2011 .

[19]  Rafael de Felício,et al.  Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). , 2010, Journal of pharmaceutical and biomedical analysis.

[20]  K. Uésugi The Adaptive Significance of Batesian Mimicry in the Swallowtail Butterfly, Papilio polytes (Insecta, Papilionidae): Associative Learning in a Predator , 2010 .

[21]  M. Imafuku,et al.  Behavioral Batesian Mimicry Involving lntraspecific Polymorphism in the Butterfly Papilio polytes , 2010, Zoological science.

[22]  K. Kunte,et al.  The Diversity and Evolution of Batesian Mimicry in Papilio Swallowtail Butterflies , 2009, Evolution; international journal of organic evolution.

[23]  G. Lamas,et al.  Pre- and postzygotic isolation and Haldane rule effects in reciprocal crosses of Danaus erippus and Danaus plexippus (Lepidoptera: Danainae), supported by differentiation of cuticular hydrocarbons, establish their status as separate species , 2007 .

[24]  J. Millar,et al.  (Z)-9-Nonacosene—Major Component of the Contact Sex Pheromone of the Beetle Megacyllene caryae , 2006, Journal of Chemical Ecology.

[25]  K. Honda,et al.  Chemical composition of volatile substances from adults of the swallowtail, Papilio polytes (Lepidoptera: Papilionidae) , 2005 .

[26]  R. Patterson,et al.  Host-location kairomone fromPeriplaneta americana (L.) for parasitoidAprostocetus hagenowii (Ratzeburg) , 1996, Journal of Chemical Ecology.

[27]  R. Nishida,et al.  Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous, to aristolochic acids , 1989, Journal of Chemical Ecology.

[28]  P. Jmhasly,et al.  Cuticular Hydrocarbons and Aggression in the Termite Macrotermes Subhyalinus , 2004, Journal of Chemical Ecology.

[29]  M. Konstantopoulou,et al.  Alkadienes and Alkenes, Sex Pheromone Components of the Almond Seed Wasp Eurytoma amygdali , 2001, Journal of Chemical Ecology.

[30]  M. Blum,et al.  Novel Chemistry of Abdominal Defensive Glands of Nymphalid Butterfly Agraulis vanillae , 2001, Journal of Chemical Ecology.

[31]  S. Gothilf,et al.  Sex pheromone of the tomato looper,Plusia chalcites (ESP) , 1981, Journal of Chemical Ecology.

[32]  J. Wheeler,et al.  Chemistry of the Dufour's gland secretions of North American andrenid bees (Hymenoptera: Andrenidae) , 1981, Journal of Chemical Ecology.

[33]  J. Mcchesney,et al.  Aphrodisiac pheromones of the sulfur butterfliesColias eurytheme andC. Philodice (Lepidoptera, Pieridae) , 2004, Journal of Chemical Ecology.

[34]  S. Wakamura,et al.  Ketone components in the contact sex pheromone of the white‐spotted longicorn beetle, Anoplophora malasiaca, and pheromonal activity of synthetic ketones , 2003 .

[35]  P. Brakefield,et al.  Significance of butterfly eyespots as an anti-predator device in ground-based and aerial attacks , 2003 .

[36]  C. Boggs,et al.  THE EVOLUTION OF WING COLOR IN COLIAS BUTTERFLIES: HERITABILITY, SEX LINKAGE, AND POPULATION DIVERGENCE , 2002, Evolution; international journal of organic evolution.

[37]  Y. Leu,et al.  Aristolochic Acids as a Defensive Substance for the Aristolochiaceous Plant‐Feeding Swallowtail Butterfly, Pachliopta aristolochiae interpositus , 2000 .

[38]  J. Mappes,et al.  BATESIAN MIMICRY AND SIGNAL ACCURACY , 1997, Evolution; international journal of organic evolution.

[39]  J. Reduron,et al.  Phytochemical and chemotaxonomic studies of Foeniculum vulgare , 1997 .

[40]  N. Ohsaki Preferential predation of female butterflies and the evolution of batesian mimicry , 1995, Nature.

[41]  R. Vane‐Wright,et al.  Specific Mixtures of Secretions from Male Scent Organs of African Milkweed Butterflies (Danainae) , 1993 .

[42]  K. R. Clarke,et al.  Non‐parametric multivariate analyses of changes in community structure , 1993 .

[43]  R. Vane‐Wright,et al.  The Biology of butterflies , 1986 .

[44]  G. Bergström,et al.  Volatile Secretions in Three Species of Dufourea (Hymenoptera: Halictidae) Bees: Chemical Composition and Phylogeny , 1985 .

[45]  J. Turner Why male butterflies are non-mimetic: natural selection, sexual selection, group selection, modification and sieving* , 1978 .

[46]  R. Vane-Wright A unified classification of mimetic resemblances , 1976 .

[47]  Malcolm P. Levin,et al.  PREFERENTIAL MATING AND THE MAINTENANCE OF THE SEX‐LIMITED DIMORPHISM IN PAPILIO GLAUCUS: EVIDENCE FROM LABORATORY MATINGS , 1973, Evolution; international journal of organic evolution.

[48]  John M. Burns Preferential Mating versus Mimicry: Disruptive Selection and Sex-limited Dimorphism in Papilio glaucus , 1966, Science.