Buried iron archaeological artefacts: Corrosion mechanisms related to the presence of Cl-containing phases

Abstract Deterioration after excavation of archaeological iron artefacts buried in soil is often associated with the presence of Cl-containing phases in corrosion products, leading to serious problems for conservation of metallic objects of cultural heritage. Thus, in order to better understand the corrosion process related to the presence of chlorine, some high-resolution techniques of materials characterisation are implemented. Particularly this paper shows the great utility of the combination of micro-X-ray diffraction, micro-Raman spectroscopy and micro-X-ray absorption spectroscopy. The analyses are realised on the cross sections of iron corroded objects excavated on archaeological sites dated from the 12th to the 16th century AD. In addition to the common oxyhydroxide containing chloride, akaganeite (β-FeOOH) often mentioned in the literature, a ferrous hydroxychloride β-Fe 2 (OH) 3 Cl was also found in the corrosion layers. In order to explain the corrosion system formed during burial, a corrosion mechanism including the presence of chlorine, is proposed.

[1]  Solenn Reguer Phases chlorées sur les objets archéologiques ferreux corrodés dans les sols : caracterisation et mécanismes de formation , 2005 .

[2]  P. Refait,et al.  The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite , 1997 .

[3]  V. Argyropoulos,et al.  The corrosion of excavated archaeological iron with details on weeping and akaganéite , 1999 .

[4]  J. Post,et al.  Crystal structure refinement of akaganéite , 1991 .

[5]  M. Abdelmoula,et al.  Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions , 1998 .

[6]  Anne Rinuy,et al.  Méthodes de conservation d'objets de fouilles en fer ; étude quantitative comparée de l'élimination des chlorures , 1981 .

[7]  P. Dillmann,et al.  Microdiffraction coupled with X-ray fluorescence microprobe, application in archaeometry , 1997 .

[8]  L. Bellot-Gurlet,et al.  Local and structural characterisation of chlorinated phases formed on ferrous archaeological artefacts by μXRD and μXANES , 2005 .

[9]  Burkhard Kaulich,et al.  THE SCANNING X-RAY MICROPROBE AT THE ESRF "X-RAY MICROSCOPY" BEAMLINE , 2002 .

[10]  Philippe Dillmann,et al.  Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system , 2005 .

[11]  L. A. Panchenko,et al.  The LURE-IMT X-ray fluorescence photon microprobe : Special issue on micro- and ultratrace X-ray fluorescence analysis , 1996 .

[12]  L. Bellot-Gurlet,et al.  Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms , 2004 .

[13]  X. Chunchun,et al.  Studies on Localized Corrosion and Desalination Treatment of Simulated Cast Iron Artifacts , 2005 .

[14]  A. Mackay β-Ferric Oxyhydroxide , 1960 .

[15]  J. Hanson,et al.  Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite , 2003 .

[16]  P. Berger,et al.  A study of transport phenomena in the corrosion products of ferrous archaeological artefacts using 18O tracing and nuclear microprobe analysis , 2005 .

[17]  Mourad Idir,et al.  LUCIA, a microfocus soft XAS beamline , 2006 .

[18]  V. Argyropoulos,et al.  The Corrosion of Excavated Archaeological Iron with Details on Weeping and Akaganéite@@@The Corrosion of Excavated Archaeological Iron with Details on Weeping and Akaganeite , 1999 .

[19]  A. Mackay β-Ferric Oxyhydroxide—Akaganéite , 1962 .

[20]  Kurt Nielsen,et al.  On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts , 2003 .

[21]  G. C. Wood,et al.  The corrosion of iron and zinc by atmospheric hydrogen chloride , 1993 .

[22]  Ludovic Legrand,et al.  Raman imaging of ancient rust scales on archaeological iron artefacts for long‐term atmospheric corrosion mechanisms study , 2006 .

[23]  Paul Keller,et al.  Vorkommen, Entstehung und Phasenumwandlung von β‐FeOOH in Rost , 1969 .

[24]  Neil A. North,et al.  WASHING METHODS FOR CHLORIDE REMOVAL FROM MARINE IRON ARTIFACTS , 1978 .

[25]  P. Lagarde,et al.  Investigation of Cl corrosion products of iron archaeological artefacts using micro-focused synchrotron X-ray absorption spectroscopy , 2006 .

[26]  F. Farges,et al.  The effect of redox state on the local structural environment of iron in silicate glasses: A combined XAFS spectroscopy, molecular dynamics, and bond valence study , 2004 .

[27]  H. Oswald,et al.  Über die Hydroxidhalogenide Me2(OH)3Cl, ‐Br, ‐J zweiwertiger Metalle (Me = Mg, Ni, Co, Cu, Fe, Mn) , 1964 .

[28]  P. Berger,et al.  6 – Species transport in the corrosion products of ferrous archaeological analogues: a contribution to the modelling of long-term iron corrosion mechanisms , 2007 .

[29]  Delphine Neff Apport des analogues archéologiques à l'estimation des vitesses moyennes et à l'étude des mécanismes de corrosion à très long terme des aciers non alliés dans les sols , 2003 .

[30]  V. Argyropoulos,et al.  Removal of Chloride and Iron Ions from Archaeological Wrought Iron with Sodium Hydroxide and Ethylenediamine Solutions , 2005 .

[31]  Philippe Dillmann,et al.  Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products , 2007 .

[32]  Enrique Vega Altération des objets ferreux archéologiques du site de Glinet (Seine-maritime, France, XVIe siècle) , 2004 .

[33]  B. Niemann,et al.  [X-ray microscopy]. , 1996, Die Naturwissenschaften.

[34]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[35]  T. Misawa,et al.  The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature , 1974 .

[36]  V. Argyropoulos,et al.  Models for Chloride Ion Diffusion in Archaeological Iron , 2001 .

[37]  S. Turgoose,et al.  POST-EXCAVATION CHANGES IN IRON ANTIQUITIES , 1982 .

[38]  S. Turgoose THE CORROSION OF ARCHAEOLOGICAL IRON DURING BURIAL AND TREATMENT , 1985 .

[39]  P. Chevallier,et al.  Characterisation of iron archaeological analogues using micro diffraction under synchrotron radiation. Application to the study of long term corrosion behaviour of low alloy steels , 2002 .