A continuum damage mechanics finite element model for investigating effects of surface roughness on rolling contact fatigue

[1]  F. Sadeghi,et al.  A continuum damage mechanics framework for modeling the effect of crystalline anisotropy on rolling contact fatigue , 2019 .

[2]  Anup S. Pandkar,et al.  Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue , 2014 .

[3]  F. Sadeghi,et al.  Fatigue Life Reduction in Mixed Lubricated Elliptical Contacts , 2007 .

[4]  R. Fougères,et al.  Role of inclusions, surface roughness and operating conditions on rolling contact fatigue , 1999 .

[5]  Ahmet Kahraman,et al.  A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions , 2012 .

[6]  A Oila,et al.  Assessment of the factors influencing micropitting in rolling/sliding contacts , 2005 .

[7]  F. Sadeghi,et al.  A Coupled Multibody Finite Element Model for Investigating Effects of Surface Defects on Rolling Contact Fatigue , 2019, Journal of Tribology.

[8]  A. Olver The Mechanism of Rolling Contact Fatigue: An Update , 2005 .

[9]  W. Weibull,et al.  The phenomenon of rupture in solids , 1939 .

[10]  Sheng Li,et al.  Micro-pitting fatigue lives of lubricated point contacts: Experiments and model validation , 2013 .

[11]  Yasutsune Ariura,et al.  An investigation of surface failure of surface-hardened gears by scanning electron microscopy observations , 1983 .

[12]  Herbert S. Cheng,et al.  Effect of Surface Topography on Contact Fatigue in Mixed Lubrication , 2003 .

[13]  Batista,et al.  Contact fatigue of automotive gears: evolution and effects of residual stresses introduced by surface treatments , 2000 .

[14]  T. A. Harris,et al.  Essential Concepts of Bearing Technology , 2006 .

[15]  R. L. Widner,et al.  Propagation of Contact Fatigue From Surface and Subsurface Origins , 1966 .

[16]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[17]  F. Sadeghi,et al.  Numerical modeling of sub-surface initiated spalling in rolling contacts , 2013 .

[18]  Neil R. Paulson,et al.  A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue , 2018 .

[19]  F. Sadeghi,et al.  A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts , 2009 .

[20]  Erwin Y. Zaretsky Fatigue criterion to system design, life and reliability: A primer , 1987 .

[21]  H. P. Evans,et al.  Prediction of fatigue damage in rough surface EHL , 2006 .

[22]  A. Kahraman,et al.  A fatigue model for contacts under mixed elastohydrodynamic lubrication condition , 2011 .

[23]  W. 0. Winer,et al.  Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils(Dr In dissertation at Technical University of Delft, 1966) , 1966 .

[24]  T. A. Harris,et al.  A New Fatigue Life Model for Rolling Bearings , 1985 .

[25]  V. V. Bolotin,et al.  Early fatigue crack growth as the damage accumulation process , 2001 .

[26]  Guillermo E. Morales-Espejel,et al.  A Model for Rolling Bearing Life with Surface and Subsurface Survival—Tribological Effects , 2015 .

[27]  F. Ville,et al.  Detrimental Effects of Debris Dents on Rolling Contact Fatigue , 2000 .

[28]  M. Puttre Computer-aided manufacturing : sculpting parts from stored patterns , 1992 .

[29]  W. Littmann The Mechanism of Contact Fatigue , 1970 .

[30]  Henry Peredur Evans,et al.  Effect of Surface Finish on Gear Tooth Friction , 2000 .

[31]  Shusuo Li,et al.  A continuum damage mechanics model for high cycle fatigue , 1998 .

[32]  F. Sadeghi,et al.  Explicit finite element modeling of subsurface initiated spalling in rolling contacts , 2010 .

[33]  T. A. Harris,et al.  Rolling Bearing Analysis , 1967 .

[34]  R. Neugebauer,et al.  Manufacturing of surface microstructures for improved tribological efficiency of powertrain components and forming tools , 2011 .

[35]  Michele Cerullo,et al.  Application of Dang Van criterion to rolling contact fatigue in wind turbine roller bearings under elastohydrodynamic lubrication conditions , 2013 .

[36]  A. Mihailidis,et al.  Calculation of friction coefficient and temperature field of line contacts lubricated with a non-Newtonian fluid , 1999 .

[37]  O. Basquin The exponential law of endurance tests , 1910 .

[38]  Herbert S. Cheng,et al.  Micropitting in Rolling and Sliding Contact Under Mixed Lubrication , 1989 .

[39]  Sheng Li,et al.  A tribo-dynamic contact fatigue model for spur gear pairs , 2017 .

[40]  Xing Zhang,et al.  Fatigue life prediction of 3-D problems by damage mechanics with two-block loading , 2002 .

[41]  F. Sadeghi,et al.  Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel , 2013 .

[42]  Trevor S. Slack,et al.  A Review of Rolling Contact Fatigue , 2009 .

[43]  F. Sadeghi,et al.  Effect of retained austenite – Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel , 2015 .

[44]  A. Palmgren,et al.  Dynamic capacity of rolling bearings , 1947 .

[45]  Yuan-zhong Hu,et al.  Stress Analysis on Layered Materials in Point Elastohydrodynamic-Lubricated Contacts , 2009 .

[46]  E. Fuller,et al.  Computer modelling of anisotropic grain microstructure in two dimensions , 1993 .

[47]  S. Creţu,et al.  A case study on relation between roughness, lubrication and fatigue life of rolling bearings , 2016 .

[48]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[49]  M.-J. A. Liston RCF life comparison of bearing steels at two stress levels , 1999 .

[50]  W. Weibull A statistical theory of the strength of materials , 1939 .

[51]  T. Tallián,et al.  An engineering model of spalling fatigue failure in rolling contact. II. The surface model , 1971 .

[52]  R W Snidle,et al.  A Simple Method of Elastic Contact Simulation , 1994 .

[53]  Xiaolan Ai Effect of Three-Dimensional Random Surface Roughness on Fatigue Life of a Lubricated Contact , 1998 .

[54]  G. Schneider,et al.  Die Charakterisierung homogener polyedrischer Gefüge mit Hilfe des räumlichen Poisson-Voronoi-Mosaiks und der Vergleich zur DIN 50 601 , 1997 .

[55]  F. Sadeghi,et al.  A 3D Finite Element Study of Fatigue Life Dispersion in Rolling Line Contacts , 2011 .

[56]  F. B. Oswald,et al.  Comparison of Models for Ball Bearing Dynamic Capacity and Life , 2015 .

[57]  M. Kamaraj,et al.  Numerical evaluation of subsurface stress field under elastohydrodynamic line contact for AISI 52100 bearing steel with retained austenite , 2015 .

[58]  F. Sadeghi,et al.  Predicting Material Performance in Rolling Contact Fatigue via Torsional Fatigue , 2019, Tribology Transactions.

[59]  F. Sadeghi,et al.  Effects of surface defects on rolling contact fatigue of heavily loaded lubricated contacts , 2010 .

[60]  Dong Zhu,et al.  Rolling-sliding contact fatigue of surfaces with sinusoidal roughness , 2016 .

[61]  T. A. Harris,et al.  Life ratings for ball and roller bearings , 2001 .

[62]  Farshid Sadeghi,et al.  A Numerical Model for Life Scatter in Rolling Element Bearings , 2008 .

[63]  T. E. Tallian,et al.  An engineering model of spalling fatigue failure in rolling contact , 1971 .

[64]  F. Sadeghi,et al.  An Improved Approach for 3D Rolling Contact Fatigue Simulations with Microstructure Topology , 2013 .

[65]  T. E. Tallian,et al.  Failure atlas for Hertz contact machine elements , 1992 .