Technological Applications of Solid Electrolytes
暂无分享,去创建一个
H. S. Ray | A. Ghosh | H. S. Ray | E. C. Subbarao | K. P. Jagannathan | S. K. Tiku | E. Subbarao | A. Ghosh | K. Jagannathan | S. Tiku
[1] R. Littlewood. Diagrammatic Representation of the Thermodynamics of Metal‐Fused Chloride Systems , 1962 .
[2] Richard C. Bailie,et al. Energy conversion engineering , 1978 .
[3] Shahed U. M. Khan,et al. Electrochemistry of Cleaner Environments , 1972 .
[4] M. Leipold,et al. THERMAL EXPANSION IN AIR OF CERAMIC OXIDES TO 2200 C , 1963 .
[5] M. Berardelli,et al. The Hexamethonium‐Silver Iodide Reversible Cell , 1973 .
[6] W. Gool,et al. 27 – Application of Solid Electrolytes in Galvanic Cells: Part 2 High-Energy-Density Cells , 1978 .
[7] C. Wagner,et al. Measurements on Galvanic Cells Involving Solid Electrolytes , 1957 .
[8] R. Dell. The Application of Solid State Ionics to Batteries , 1976 .
[9] Fred Y. Chen,et al. Preparation of Vacuum‐Deposited Films of Rubidium Silver Iodide , 1973 .
[10] B. Scrosati. Electrochemical Properties of RbAg4 I 5 Solid Electrolyte III . Chargeable Cells , 1973 .
[11] E. H. Hietbrink,et al. Electrochemical Power Sources for Vehicle Propulsion , 1972 .
[12] K. Hever. A Solid‐State Electrochemical Cell Based on Ion Conductive Ceramics , 1968 .
[13] D. W. Short,et al. The Control of Oxygen Activities in Argon‐Oxygen Mixtures by Coulometric Titration , 1974 .
[14] J. Bockris,et al. Fuel cells : their electrochemistry , 1969 .
[15] R. Casselton. Low field DC conduction in yttria-stabilized zirconia , 1970 .
[16] H. Rickert,et al. Elektrochemische messung der sauerstoffaktivität in flüssingem kupfer , 1966 .
[17] S. Ikeda,et al. Solid-state ionics: a new high ionic conductivity solid electrolyte Ag/sub 6/I/sub 4/WO/sub 4/ and use of this compound in a solid-electrolyte cell , 1973 .
[18] J. H. Christie,et al. High‐Conductivity Solid Electrolytes: C a H b Nl ‐ Agl Double Salts , 1971 .
[19] R. Littlewood. A Review of EMF Methods for Oxygen Determination in Molten Metals , 1966 .
[20] B. Baker,et al. Hydrocarbon fuel cell technology , 1965 .
[21] L. Heyne. Some aspects of solid electrolytes , 1970 .
[22] R. Rapp,et al. Electrochemical deoxidation of induction-stirred copper melts , 1973 .
[23] A. J. White,et al. Anisotropic electrochemical concentration cell: a system based on oriented β-alumina (NaAl11O17) as solid electrolyte , 1972 .
[24] R. Armstrong,et al. The impedance of the sodium β-alumina interphase , 1973 .
[25] H. Iwahara,et al. Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell , 1971 .
[26] B. Owens,et al. Stability of the Solid State Cell Ag / Ag3 SI / I 2 , 1969 .
[27] T. Etsell,et al. The determination of oxygen in gas mixtures by electromotive force measurements using solid oxide electrolytes , 1972 .
[28] R. Casselton,et al. Destabilization of the Yttria:Zirconia Fluorite Phase by Electrolysis , 1970 .
[29] P. Delahay,et al. Advances in Electrochemistry and Electrochemical Engineering , 1964 .
[30] B. Scrosati,et al. A study of some charge transfer complexes as electrodes in solid-state cells , 1976 .
[31] T. Ramanarayanan,et al. The diffusivity and solubility of oxygen in liquid tin and solid silver and the diffusivity , 1972 .
[32] H. Rickert,et al. Elektrochemische Messung der Sauerstoffdiffusion in Metallen bei höheren Temperaturen , 1966 .
[33] Takehiko Takahashi. Solid silver ion conductors , 1973 .
[34] M. Kleitz,et al. Electrode Processes in Solid State Ionics , 1975 .
[35] J. Hoare,et al. The electrochemistry of oxygen , 1968 .
[36] C. Lasne,et al. Study of a Beta‐Alumina Electrolyte for Sodium‐Sulfur Battery , 1973 .
[37] D. Swinkels. Rapid Determination of Electronic Conductivity Limits of Solid Electrolytes , 1970 .
[38] T. Katsura,et al. Equilibria in the V2O3-VO2 System at 1600°K , 1967 .
[39] C. Stein. Critical Materials Problems in Energy Production , 1976 .
[40] R. Steiner,et al. Hochtemperatur‐Brennstoffzellen mit keramischen Elektrolyten zur Umsetzung billiger Brennstoffe. Teil II: Aufbau und Wirtschaftlichkeit von HTBZ‐Aggregaten und deren Anwendungsmöglichkeiten , 1972 .
[41] R. Ruka,et al. A Solid Electrolyte Fuel Cell , 1962 .
[42] Takehiko Takahashi,et al. The Ag/Ag3SI/I2 solid-electrolyte cell , 1966 .
[43] H. A. Liebhafsky,et al. Fuel cells and fuel batteries. Guide to their research and development , 1968 .
[44] C. C. Sun,et al. Sintered Zirconia Electrolyte Films in High‐Temperature Fuel Cells , 1971 .
[45] C. B. Alcock,et al. Thermodynamics and solubility of oxygen in liquid metals from e.m.f. measurements involving solid electrolytes. Part 2.—Tin , 1964 .
[46] A. Anthony. 30 – High-Temperature Heating Elements in Oxidizing Atmosphere , 1978 .
[47] B. Scrosati,et al. A Reversible Solid‐State Battery with RbAg4 I 5 as Electrolyte , 1969 .
[48] Julius Ju Lurje,et al. Handbook of analytical chemistry , 1975 .
[49] A. Ghosh,et al. Thermodynamics of Liquid Copper‐Silver Alloys by a Solid Electrolyte Cell , 1970 .
[50] G. W. Mellors,et al. The Ag / KCN ‐ 4Agl / 2 Perylene · 3 I 2 Solid‐State Battery System , 1973 .
[51] E. G. Rochow,et al. Electrode Potentials in Molten Silicates , 1954 .
[52] S. W. Angrist. Direct energy conversion , 1976 .
[53] S. Ikeda,et al. Solid‐State Ionics—Solids with High Ionic Conductivity in the Systems Silver Iodide‐Silver Oxyacid Salts , 1972 .
[54] G. Janz,et al. Oxygen Overpotential in Molten Carbonates , 1960 .
[55] G. Ulmer. Research techniques for high pressure and high temperature , 1971 .
[56] A. Ghosh,et al. Thermodynamic measurements in liquid Sn−Ag Alloys , 1971 .
[57] H. Isaacs. Calibration of Electrochemical Oxygen Meters in Sodium Using Uranium , 1972 .
[58] T. Etsell,et al. Electrical properties of solid oxide electrolytes , 1970 .
[59] R. Zahradnik,et al. Westinghouse Solid-Electrolyte Fuel Cell , 1969 .
[60] Takehiko Takahashi,et al. Solid Ionics—Solid Electrolyte Cells , 1970 .
[61] H. S. Spacil,et al. Electrochemical Dissociation of Water Vapor in Solid Oxide Electrolyte Cells II . Materials, Fabrication, and Properties , 1969 .
[62] S. Das,et al. Thermodynamic measurements in molten Pb-Sn alloys , 1972 .
[63] H. S. Ray,et al. Kinetics of oxygen dissolution in molten lead , 1971 .
[64] S. Zador,et al. Electrolytic removal of oxygen from gases by means of solid electrolyte , 1972 .
[65] H. Schmalzried. Ionen- und Elektronenleitung in binären Oxiden und ihre Untersuchung mittels EMK-Messungen , 1963 .
[66] M. Barak,et al. Recent developments in batteries and voltaic cells , 1972 .
[67] R. Hultgren,et al. Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .
[68] J. T. Kummer,et al. Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .
[69] P. Fabry,et al. Electrochemical Semipermeability and the Electrode Microsystem in Solid Oxide Electrolyte Cells , 1976 .
[70] G. H. Geiger,et al. On the thermodynamics of oxygen in molten copper, Cu-Sn, and Cu-Ag alloys , 1970 .
[71] Nirmal K. Gupta,et al. Thermodynamic and Physical Properties of Molten Sodium Polysulfides from Open‐Circuit Voltage Measurements , 1972 .
[72] M. Gleiser,et al. Thermochemistry for steelmaking , 1960 .
[73] J. Osterwald. EMK-Messungen an flüssigem Kupfer im Gleichgewicht mit festem oder flüssigem Kupfer(I)-oxid , 1966 .
[74] Y. Vasil’ev,et al. Fuel cells : their electrochemical kinetics , 1966 .
[75] F. A. Kröger,et al. Stabilized Zirconia as an Oxygen Pump , 1969 .
[76] A. Muan,et al. A New Cell for Electrochemical Studies at Elevated Temperatures: Design and Properties of a Cell Involving a Combination of Thorium Oxide‐Yttrium Oxide and Zirconium Oxide‐Calcium Oxide Electrolytes , 1969 .
[77] Takehiko Takahashi. Some Super Ionic Conductors and Their Applications , 1976 .
[78] Elton J. Cairns,et al. CHO Gas Phase Compositions in Equilibrium with Carbon, and Carbon Deposition Boundaries at One Atmosphere. , 1964 .
[79] Y. L. Sandier. An Electrochemical Surface Area Meter , 1974 .
[80] R. Littlewood,et al. Electrochemical studies of the behaviour of metals in fused chlorides , 1961 .
[81] H. Binder,et al. Elektrochemische oxydation von kohlenwasserstoffen in einer festelektrolytbrennstoffzelle bei temperaturen von 900–1000°C☆ , 1963 .
[82] E. Cairns,et al. High-temperature batteries. , 1969, Science.
[83] J. Clegg. A solid electrolyte detector for the determination of trace amounts of oxygen in the presence of argon and other gases , 1970 .
[84] H. S. Spacil,et al. Cathode Materials and Performance in High‐Temperature Zirconia Electrolyte Fuel Cells , 1969 .
[85] F. J. Martino,et al. Performance Characteristics of Solid Lithium‐Aluminum Alloy Electrodes , 1976 .
[86] K. Jacob,et al. Activities of oxygen and lead in liquid Pb + Ag + O solutions , 1971 .
[87] T. Etsell,et al. Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells , 1971 .