Technological Applications of Solid Electrolytes

The previous chapters have adequately discussed and illustrated the present status of solid electrolytes from the point of view of fundamental research and information. The scope is indeed very wide. Potential uses of solid electrolytes of various kinds in commercial applications are also numerous. However, in actual practice such applications remain rather limited due to problems associated with commercially available materials as well as actual technological difficulties in incorporating such materials in contemplated devices.

[1]  R. Littlewood Diagrammatic Representation of the Thermodynamics of Metal‐Fused Chloride Systems , 1962 .

[2]  Richard C. Bailie,et al.  Energy conversion engineering , 1978 .

[3]  Shahed U. M. Khan,et al.  Electrochemistry of Cleaner Environments , 1972 .

[4]  M. Leipold,et al.  THERMAL EXPANSION IN AIR OF CERAMIC OXIDES TO 2200 C , 1963 .

[5]  M. Berardelli,et al.  The Hexamethonium‐Silver Iodide Reversible Cell , 1973 .

[6]  W. Gool,et al.  27 – Application of Solid Electrolytes in Galvanic Cells: Part 2 High-Energy-Density Cells , 1978 .

[7]  C. Wagner,et al.  Measurements on Galvanic Cells Involving Solid Electrolytes , 1957 .

[8]  R. Dell The Application of Solid State Ionics to Batteries , 1976 .

[9]  Fred Y. Chen,et al.  Preparation of Vacuum‐Deposited Films of Rubidium Silver Iodide , 1973 .

[10]  B. Scrosati Electrochemical Properties of RbAg4 I 5 Solid Electrolyte III . Chargeable Cells , 1973 .

[11]  E. H. Hietbrink,et al.  Electrochemical Power Sources for Vehicle Propulsion , 1972 .

[12]  K. Hever A Solid‐State Electrochemical Cell Based on Ion Conductive Ceramics , 1968 .

[13]  D. W. Short,et al.  The Control of Oxygen Activities in Argon‐Oxygen Mixtures by Coulometric Titration , 1974 .

[14]  J. Bockris,et al.  Fuel cells : their electrochemistry , 1969 .

[15]  R. Casselton Low field DC conduction in yttria-stabilized zirconia , 1970 .

[16]  H. Rickert,et al.  Elektrochemische messung der sauerstoffaktivität in flüssingem kupfer , 1966 .

[17]  S. Ikeda,et al.  Solid-state ionics: a new high ionic conductivity solid electrolyte Ag/sub 6/I/sub 4/WO/sub 4/ and use of this compound in a solid-electrolyte cell , 1973 .

[18]  J. H. Christie,et al.  High‐Conductivity Solid Electrolytes: C a H b Nl ‐ Agl Double Salts , 1971 .

[19]  R. Littlewood A Review of EMF Methods for Oxygen Determination in Molten Metals , 1966 .

[20]  B. Baker,et al.  Hydrocarbon fuel cell technology , 1965 .

[21]  L. Heyne Some aspects of solid electrolytes , 1970 .

[22]  R. Rapp,et al.  Electrochemical deoxidation of induction-stirred copper melts , 1973 .

[23]  A. J. White,et al.  Anisotropic electrochemical concentration cell: a system based on oriented β-alumina (NaAl11O17) as solid electrolyte , 1972 .

[24]  R. Armstrong,et al.  The impedance of the sodium β-alumina interphase , 1973 .

[25]  H. Iwahara,et al.  Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell , 1971 .

[26]  B. Owens,et al.  Stability of the Solid State Cell Ag / Ag3 SI / I 2 , 1969 .

[27]  T. Etsell,et al.  The determination of oxygen in gas mixtures by electromotive force measurements using solid oxide electrolytes , 1972 .

[28]  R. Casselton,et al.  Destabilization of the Yttria:Zirconia Fluorite Phase by Electrolysis , 1970 .

[29]  P. Delahay,et al.  Advances in Electrochemistry and Electrochemical Engineering , 1964 .

[30]  B. Scrosati,et al.  A study of some charge transfer complexes as electrodes in solid-state cells , 1976 .

[31]  T. Ramanarayanan,et al.  The diffusivity and solubility of oxygen in liquid tin and solid silver and the diffusivity , 1972 .

[32]  H. Rickert,et al.  Elektrochemische Messung der Sauerstoffdiffusion in Metallen bei höheren Temperaturen , 1966 .

[33]  Takehiko Takahashi Solid silver ion conductors , 1973 .

[34]  M. Kleitz,et al.  Electrode Processes in Solid State Ionics , 1975 .

[35]  J. Hoare,et al.  The electrochemistry of oxygen , 1968 .

[36]  C. Lasne,et al.  Study of a Beta‐Alumina Electrolyte for Sodium‐Sulfur Battery , 1973 .

[37]  D. Swinkels Rapid Determination of Electronic Conductivity Limits of Solid Electrolytes , 1970 .

[38]  T. Katsura,et al.  Equilibria in the V2O3-VO2 System at 1600°K , 1967 .

[39]  C. Stein Critical Materials Problems in Energy Production , 1976 .

[40]  R. Steiner,et al.  Hochtemperatur‐Brennstoffzellen mit keramischen Elektrolyten zur Umsetzung billiger Brennstoffe. Teil II: Aufbau und Wirtschaftlichkeit von HTBZ‐Aggregaten und deren Anwendungsmöglichkeiten , 1972 .

[41]  R. Ruka,et al.  A Solid Electrolyte Fuel Cell , 1962 .

[42]  Takehiko Takahashi,et al.  The Ag/Ag3SI/I2 solid-electrolyte cell , 1966 .

[43]  H. A. Liebhafsky,et al.  Fuel cells and fuel batteries. Guide to their research and development , 1968 .

[44]  C. C. Sun,et al.  Sintered Zirconia Electrolyte Films in High‐Temperature Fuel Cells , 1971 .

[45]  C. B. Alcock,et al.  Thermodynamics and solubility of oxygen in liquid metals from e.m.f. measurements involving solid electrolytes. Part 2.—Tin , 1964 .

[46]  A. Anthony 30 – High-Temperature Heating Elements in Oxidizing Atmosphere , 1978 .

[47]  B. Scrosati,et al.  A Reversible Solid‐State Battery with RbAg4 I 5 as Electrolyte , 1969 .

[48]  Julius Ju Lurje,et al.  Handbook of analytical chemistry , 1975 .

[49]  A. Ghosh,et al.  Thermodynamics of Liquid Copper‐Silver Alloys by a Solid Electrolyte Cell , 1970 .

[50]  G. W. Mellors,et al.  The Ag / KCN ‐ 4Agl / 2 Perylene · 3 I 2 Solid‐State Battery System , 1973 .

[51]  E. G. Rochow,et al.  Electrode Potentials in Molten Silicates , 1954 .

[52]  S. W. Angrist Direct energy conversion , 1976 .

[53]  S. Ikeda,et al.  Solid‐State Ionics—Solids with High Ionic Conductivity in the Systems Silver Iodide‐Silver Oxyacid Salts , 1972 .

[54]  G. Janz,et al.  Oxygen Overpotential in Molten Carbonates , 1960 .

[55]  G. Ulmer Research techniques for high pressure and high temperature , 1971 .

[56]  A. Ghosh,et al.  Thermodynamic measurements in liquid Sn−Ag Alloys , 1971 .

[57]  H. Isaacs Calibration of Electrochemical Oxygen Meters in Sodium Using Uranium , 1972 .

[58]  T. Etsell,et al.  Electrical properties of solid oxide electrolytes , 1970 .

[59]  R. Zahradnik,et al.  Westinghouse Solid-Electrolyte Fuel Cell , 1969 .

[60]  Takehiko Takahashi,et al.  Solid Ionics—Solid Electrolyte Cells , 1970 .

[61]  H. S. Spacil,et al.  Electrochemical Dissociation of Water Vapor in Solid Oxide Electrolyte Cells II . Materials, Fabrication, and Properties , 1969 .

[62]  S. Das,et al.  Thermodynamic measurements in molten Pb-Sn alloys , 1972 .

[63]  H. S. Ray,et al.  Kinetics of oxygen dissolution in molten lead , 1971 .

[64]  S. Zador,et al.  Electrolytic removal of oxygen from gases by means of solid electrolyte , 1972 .

[65]  H. Schmalzried Ionen- und Elektronenleitung in binären Oxiden und ihre Untersuchung mittels EMK-Messungen , 1963 .

[66]  M. Barak,et al.  Recent developments in batteries and voltaic cells , 1972 .

[67]  R. Hultgren,et al.  Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .

[68]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[69]  P. Fabry,et al.  Electrochemical Semipermeability and the Electrode Microsystem in Solid Oxide Electrolyte Cells , 1976 .

[70]  G. H. Geiger,et al.  On the thermodynamics of oxygen in molten copper, Cu-Sn, and Cu-Ag alloys , 1970 .

[71]  Nirmal K. Gupta,et al.  Thermodynamic and Physical Properties of Molten Sodium Polysulfides from Open‐Circuit Voltage Measurements , 1972 .

[72]  M. Gleiser,et al.  Thermochemistry for steelmaking , 1960 .

[73]  J. Osterwald EMK-Messungen an flüssigem Kupfer im Gleichgewicht mit festem oder flüssigem Kupfer(I)-oxid , 1966 .

[74]  Y. Vasil’ev,et al.  Fuel cells : their electrochemical kinetics , 1966 .

[75]  F. A. Kröger,et al.  Stabilized Zirconia as an Oxygen Pump , 1969 .

[76]  A. Muan,et al.  A New Cell for Electrochemical Studies at Elevated Temperatures: Design and Properties of a Cell Involving a Combination of Thorium Oxide‐Yttrium Oxide and Zirconium Oxide‐Calcium Oxide Electrolytes , 1969 .

[77]  Takehiko Takahashi Some Super Ionic Conductors and Their Applications , 1976 .

[78]  Elton J. Cairns,et al.  CHO Gas Phase Compositions in Equilibrium with Carbon, and Carbon Deposition Boundaries at One Atmosphere. , 1964 .

[79]  Y. L. Sandier An Electrochemical Surface Area Meter , 1974 .

[80]  R. Littlewood,et al.  Electrochemical studies of the behaviour of metals in fused chlorides , 1961 .

[81]  H. Binder,et al.  Elektrochemische oxydation von kohlenwasserstoffen in einer festelektrolytbrennstoffzelle bei temperaturen von 900–1000°C☆ , 1963 .

[82]  E. Cairns,et al.  High-temperature batteries. , 1969, Science.

[83]  J. Clegg A solid electrolyte detector for the determination of trace amounts of oxygen in the presence of argon and other gases , 1970 .

[84]  H. S. Spacil,et al.  Cathode Materials and Performance in High‐Temperature Zirconia Electrolyte Fuel Cells , 1969 .

[85]  F. J. Martino,et al.  Performance Characteristics of Solid Lithium‐Aluminum Alloy Electrodes , 1976 .

[86]  K. Jacob,et al.  Activities of oxygen and lead in liquid Pb + Ag + O solutions , 1971 .

[87]  T. Etsell,et al.  Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells , 1971 .