Optimal sensor selection for model identification in iterative learning control of spatio-temporal systems

An approach to sensor location problem for parameter estimation of a distributed system controlled under repetitive regime is presented. In order to reduce the uncertainty of the model used for the control design, thus increasing the system performance, the iterative learning control scheme is extended with parameter estimation of mathematical model with the use of the sequential experimental design. The related sensor location problem corresponds to situation where from among all potential sites where the sensors can be placed we have to select a subset which provide the most informative measurements in order to update the system parameter estimates. Thus, in each process trial, both the control performance and process model can be substantially improved. As an illustration of the proposed approach the application to nontrivial chemical process of fuel combustion is given.

[1]  E. Rafajłowicz Optimum choice of moving sensor trajectories for distributed-parameter system identification , 1986 .

[2]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[3]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[4]  Maciej Patan,et al.  Decentralized Scheduling of Sensor Networks for Parameter Estimation of Spatio-Temporal Processes , 2016 .

[5]  Xuefang Li,et al.  D-type anticipatory iterative learning control for a class of inhomogeneous heat equations , 2013, Autom..

[6]  Dariusz Uci SENSOR NETWORK DESIGN FOR THE ESTIMATION OF SPATIALLY DISTRIBUTED PROCESSES , 2010 .

[7]  Jay H. Lee,et al.  Experimental application of a quadratic optimal iterative learning control method for control of wafer temperature uniformity in rapid thermal processing , 2003 .

[8]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[9]  E. Rogers,et al.  Iterative Learning Control in Health Care: Electrical Stimulation and Robotic-Assisted Upper-Limb Stroke Rehabilitation , 2012, IEEE Control Systems.

[10]  Maciej Patan,et al.  Optimal observation strategies for model-based fault detection in distributed systems , 2005 .

[11]  Mingxuan Sun,et al.  Anticipatory iterative learning control for nonlinear systems with arbitrary relative degree , 2001, IEEE Trans. Autom. Control..

[12]  YangQuan Chen,et al.  Time–Optimal Path Planning of Moving Sensors for Parameter Estimation of Distributed Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[13]  Maciej Patan,et al.  D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..

[14]  Jay H. Lee,et al.  ITERATIVE LEARNING CONTROL APPLIED TO BATCH PROCESSES: AN OVERVIEW , 2006 .

[15]  Boutaieb Dahhou,et al.  Application of iterative learning control to an exothermic semibatch chemical reactor , 2002, IEEE Trans. Control. Syst. Technol..

[16]  Eric Rogers,et al.  Iterative learning control of FES applied to the upper extremity for rehabilitation , 2009 .

[17]  Maciej Patan,et al.  Distributed scheduling of sensor networks for identification of spatio-temporal processes , 2012, Int. J. Appl. Math. Comput. Sci..

[18]  A. Vande Wouwer,et al.  Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design , 1996 .

[19]  Kevin L. Moore,et al.  Iterative Learning Control: Brief Survey and Categorization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[20]  Maciej Patan Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems , 2012 .

[21]  Maciej Patan,et al.  Time-constrained sensor scheduling for parameter estimation of distributed systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[22]  YangQuan Chen,et al.  Resource-Constrained Sensor Routing for Parameter Estimation of Distributed Systems , 2008 .

[23]  Lukasz Korus Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior , 2014, Int. J. Appl. Math. Comput. Sci..

[24]  Arye Nehorai,et al.  Landmine detection and localization using chemical sensor array processing , 2000, IEEE Trans. Signal Process..

[25]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[26]  Maciej Patan,et al.  Sensor network design for the estimation of spatially distributed processes , 2010, Int. J. Appl. Math. Comput. Sci..

[27]  Krzysztof Galkowski,et al.  Control Systems Theory and Applications for Linear Repetitive Processes - Recent Progress and Open Research Questions , 2007 .

[28]  Cheng Shao,et al.  Robust iterative learning control with applications to injection molding process , 2001 .

[29]  Wojciech Paszke,et al.  Robust finite frequency range iterative learning control design and experimental verification , 2013 .

[30]  Wojciech Paszke,et al.  Iterative Learning Control by Two-Dimensional System Theory applied to a Motion System , 2007, 2007 American Control Conference.

[31]  Maciej Patan,et al.  OPTIMAL ACTIVATION STRATEGY OF DISCRETE SCANNING SENSORS FOR FAULT DETECTION IN DISTRIBUTED-PARAMETER SYSTEMS , 2005 .

[32]  Andrew G. Alleyne,et al.  Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning , 1999 .

[33]  Arye Nehorai,et al.  Localizing vapor-emitting sources by moving sensors , 1996, IEEE Trans. Signal Process..

[34]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[35]  Wojciech Paszke,et al.  Sequential design for model calibration in iterative learning control of DC motor , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[36]  Maciej Patan,et al.  Robust sensor scheduling via iterative design for parameter estimation of distributed systems , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[37]  Maciej Patan,et al.  OPTIMAL LOCATION OF DISCRETE SCANNING SENSORS FOR PARAMETER ESTIMATION OF DISTRIBUTED SYSTEMS , 2002 .

[38]  Javier Moreno-Valenzuela,et al.  An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation , 2013, Int. J. Appl. Math. Comput. Sci..

[39]  A. Tayebi,et al.  Robust Iterative Learning Control Design: Application to a Robot Manipulator , 2008, IEEE/ASME Transactions on Mechatronics.

[40]  Maciej Patan,et al.  A Parallel Sensor Scheduling Technique for Fault Detection in Distributed Parameter Systems , 2008, Euro-Par.

[41]  Carlos S. Kubrusly,et al.  Sensors and controllers location in distributed systems - A survey , 1985, Autom..

[42]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[43]  Dong-Il Kim,et al.  An iterative learning control method with application for CNC machine tools , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[44]  Masaru Uchiyama,et al.  Formation of High-Speed Motion Pattern of a Mechanical Arm by Trial , 1978 .

[45]  Maciej Patan,et al.  Configuring A Sensor Network for Fault Detection in Distributed Parameter Systems , 2008, Int. J. Appl. Math. Comput. Sci..