From Riemannian Trichromacy to Quantum Color Opponency via Hyperbolicity

We propose a mathematical description of human color perception that relies on a hyperbolic structure of the space $${\mathcal {P}}$$ of perceived colors. We show that hyperbolicity allows us to reconcile both trichromaticity, from a Riemannian point of view, and color opponency, from a quantum viewpoint. In particular, we will underline how the opponent behavior can be represented by a rebit, a real analog of a qubit, whose state space is endowed with the Hilbert metric.

[1]  J. Baez Division Algebras and Quantum Theory , 2011, 1101.5690.

[2]  E. Schrödinger Grundlinien einer Theorie der Farbenmetrik im Tagessehen , 1920 .

[3]  T. Kanade,et al.  Color information for region segmentation , 1980 .

[4]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[5]  Steven K Shevell,et al.  Color opponency: tutorial. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[7]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[8]  E. Provenzi Geometry of color perception. Part 1: structures and metrics of a homogeneous color space , 2020, Journal of mathematical neuroscience.

[9]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[10]  Hermann Grassmann,et al.  Zur Theorie der Farbenmischung , 1853 .

[11]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[12]  H. L. Resnikoff Differential geometry and color perception , 1974 .

[13]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[14]  Isaac Sir Newton Opticks, or, A treatise of the reflections, refractions, inflections & colours of light , 1933 .

[15]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[16]  A. F. Beardon,et al.  The Klein, Hilbert and Poincaré metrics of a domain , 1999 .

[17]  A. Uhlmann Spheres and hemispheres as quantum state spaces , 1996 .

[18]  Valter Moretti Spectral Theory and Quantum Mechanics , 2013 .

[19]  M. Berthier Geometry of color perception. Part 2: perceived colors from real quantum states and Hering’s rebit , 2020, Journal of mathematical neuroscience.

[20]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[21]  James Clerk Maxwell 1. Experiments on Colour as perceived by the Eye, with Remarks on Colour-Blindness , 1857 .

[22]  Reiner Lenz,et al.  The Hyperbolic Geometry of Illumination-Induced Chromaticity Changes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  F. Strocchi,et al.  An Introduction To The Mathematical Structure Of Quantum Mechanics , 2008 .

[24]  F. Strocchi An introduction to the mathematical structure of quantum mechanics : a short course for mathematicians : lecture notes , 2005 .

[25]  Ivar Farup,et al.  Interpolation of the MacAdam Ellipses , 2018, SIAM J. Imaging Sci..

[26]  Isaac Newton,et al.  New theory about light and colors , 2014 .

[27]  Julie Delon,et al.  On the second order spatiochromatic structure of natural images , 2016, Vision Research.

[28]  William K. Wootters,et al.  The rebit three-tangle and its relation to two-qubit entanglement , 2014, 1402.2219.

[29]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.