A spatially resolved high spectral resolution study of Neptune’s stratosphere

Abstract Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune’s stratosphere in October 2007, LS = 275.4° just past Neptune’s southern summer solstice (LS = 270°). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the ν4 band of methane to retrieve detailed information on Neptune’s stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 ± 0.8, 155.0 ± 0.9, and 123.8 ± 0.8 K at the 7.0 × 10−3-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at −28° latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of 3.3 - 0.9 + 1.2 × 10 - 8 at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at −70° latitude. However, a meridionally constant VMR of 9.3 - 2.6 + 3.5 × 10 - 7 at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40 K at 7 × 10−3 mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement. We have also retrieved observations of C2H4 emission from Neptune’s stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, LS = 266°. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5° of LS later, the seasonal equivalent of 9.5 Earth days within Earth’s seasonal cycle), we infer a C2H4 VMR of 5.9 - 0.8 + 1.0 × 10 - 7 at 1.5 × 10−3 mbar, a value that is 3.25 times that predicted by global-average photochemical models.

[1]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[2]  Michael W. Davis,et al.  New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter’s atmosphere , 2010 .

[3]  G. Orton,et al.  A General Radiative Seasonal Climate Model Applied to Saturn, Uranus, and Neptune. , 2008 .

[4]  E. Lellouch,et al.  Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets , 2005 .

[5]  J. Connerney,et al.  Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra , 2006 .

[6]  S. Calcutt,et al.  Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements , 2007 .

[7]  T. Fouchet,et al.  Meridional distribution of CH3C2H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations , 2010 .

[8]  A. D. Del Genio,et al.  Saturn's south polar vortex compared to other large vortices in the Solar System , 2009 .

[9]  Laurence S. Rothman,et al.  Total internal partition sums for molecules in the terrestrial atmosphere , 2000 .

[10]  A. A. Chursin,et al.  The 1997 spectroscopic GEISA databank , 1999 .

[11]  J. F. Appleby CH4 nonlocal thermodynamic equilibrium in the atmospheres of the giant planets , 1990 .

[12]  B. Bézard,et al.  Hydrocarbons in Neptune's stratosphere from Voyager infrared observations , 1991 .

[13]  Matthew Joseph Griffin,et al.  Neptune's far-infrared spectrum from the ISO long-wavelength and short-wavelength spectrometers , 2003 .

[14]  J. F. Appleby Radiative-convective equilibrium models of Uranus and Neptune , 1986 .

[15]  G. Orton,et al.  Stratospheric Photochemistry on Neptune: Constraints from Spitzer Observations , 2008 .

[16]  Jean-Marie Flaud,et al.  Toward an Accurate Database for the 12 μm Region of the Ethane Spectrum , 2007 .

[17]  J. Borysow,et al.  Modeling of pressure-induced far-infrared absorption spectra Molecular hydrogen pairs. [in outer planets atmospheres , 1985 .

[18]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[19]  G. Orton,et al.  Temperature and Composition of Saturn's Polar Hot Spots and Hexagon , 2008, Science.

[20]  P. Romani,et al.  Ethane abundance on Neptune , 1989 .

[21]  E. Lellouch,et al.  The hydrogen ortho-to-para ratio in the stratospheres of the giant planets , 2003 .

[22]  B. Bézard,et al.  Stratospheric ethane on Neptune: Comparison of groundbased and Voyager IRIS retrievals , 1992 .

[23]  R. J. Boyle,et al.  Saturn's latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations , 2009 .

[24]  T. Greathouse,et al.  Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES , 2005 .

[25]  Miguel de Val-Borro,et al.  First results of Herschel-PACS observations of Neptune , 2010, 1006.0114.

[26]  R. Vervack,et al.  The Distribution Hydrocarbons in Neptune's Upper Atmosphere , 1993 .

[27]  T. Geballe,et al.  High-resolution 3-μm spectra of Jupiter: Latitudinal spectral variations influenced by molecules, clouds, and haze , 2010 .

[28]  T. Fouchet,et al.  Vertical and meridional distribution of ethane, acetylene and propane in Saturn's stratosphere from CIRS/Cassini limb observations , 2009 .

[29]  G. Orton,et al.  Saturn's Temperature Field from High-Resolution Middle-Infrared Imaging , 2005, Science.

[30]  T. Encrenaz,et al.  Neptune's atmospheric composition from AKARI infrared spectroscopy , 2010, 1003.5571.

[31]  D. Gautier,et al.  The helium abundance of Neptune from Voyager measurements , 1991 .

[32]  A. Borysow,et al.  Theoretical collision-induced rototranslational absorption spectra for the outer planets: H2-CH4 pairs , 1986 .

[33]  A. D. Del Genio,et al.  Dynamics of Saturn's South Polar Vortex , 2008, Science.

[34]  T. Owen,et al.  Improved constraints on Neptune's atmosphere from submillimetre-wavelength observations , 2005 .

[35]  Jacek Borysow,et al.  Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K , 1986 .

[36]  Glenn S. Orton,et al.  The quasiquadrennial oscillation of Jupiter's equatorial stratosphere , 1991, Nature.

[37]  B. Bézard,et al.  Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn's stratosphere at southern summer solstice , 2005 .

[38]  H. Hammel,et al.  Long-term atmospheric variability on Uranus and Neptune , 2007 .

[39]  William E. Blass,et al.  Thermal spectroscopy of Neptune: the stratospheric temperature, hydrocarbon abundances, and isotopic ratios , 1992 .

[40]  W. Hubbard,et al.  Oblateness, radius, and mean stratospheric temperature of Neptune from the 1985 August 20 occultation , 1987 .

[41]  Richard C. Puetter,et al.  Evidence for methane escape and strong seasonal and dynamical perturbations of Neptune's atmospheric temperatures , 2007 .

[42]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[43]  L. Bernstein,et al.  Mid-Infrared Ethane Emission on Neptune and Uranus* , 2006, astro-ph/0602546.

[44]  Andreas Seifahrt,et al.  Status of the Echelon-cross-Echelle Spectrograph for SOFIA , 2010, Astronomical Telescopes + Instrumentation.

[45]  D. Jaffe,et al.  TEXES: A Sensitive High-Resolution Grating Spectrograph for the Mid-Infrared , 2001, astro-ph/0110521.

[46]  A. Friedson,et al.  New Observations and Modelling of a QBO-Like Oscillation in Jupiter's Stratosphere , 1999 .

[47]  F. M. Flasar,et al.  Thermal structure and dynamics of Neptune's atmosphere from Voyager measurements , 1991 .

[48]  D. Strobel,et al.  Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra , 2007 .