Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeO*OH) by instrumented indentation and molecular dynamics analysis

Abstract Hardness and elastic properties of pure (crystal) and complex (product of corrosion) iron oxides, magnetite (Fe 3 O 4 ), hematite (α-Fe 2 O 3 ) and goethite (α-FeO·OH), were determined by means of molecular dynamics analysis (MDA) and instrumented indentation. To determine local mechanical properties by indentation, multicyclic loading is performed by using incremental mode. Moreover to study the influence of visco-elastoplastic behaviour of the material, various load-dwell-times were applied at each loading/unloading cycle. To support the indentation results, molecular dynamics analysis based on shell model potential is performed for pure oxides to determine Young's modulus, bulk modulus, Poisson's ratio and shear modulus. The comparison between experimental and theoretical values both with the literature data allows the evaluation of the mechanical properties of the pure oxides. Subsequently, this allows the validation of the mechanical properties of complex oxides which can only be deduced from indentation experiments.

[1]  L. Menezes,et al.  Three-dimensional numerical simulation of Vickers indentation tests , 2006 .

[2]  L. Gerward,et al.  A study of the crystal structure of Fe2O3 in the pressure range up to 65 GPa using synchrotron radiation , 1991 .

[3]  H. Gerçek,et al.  Poisson's ratio values for rocks , 2007 .

[4]  H. Kagi,et al.  Variation of hydrogen bonded O···O distances in goethite at high pressure , 2003 .

[5]  M. Pellizzari,et al.  Effect of three nitriding treatments on tribological performance of 42CrAlMo7 steel in boundary lubrication , 2002 .

[6]  Alexei Bolshakov,et al.  A critical examination of the fundamental relations used in the analysis of nanoindentation data , 1999 .

[7]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[8]  R. Jeanloz,et al.  Pressure-temperature stability studies of FeOOH using X-ray diffraction , 2008 .

[9]  C. Daghlian,et al.  Investigation of novel superhard materials by multi-cycling nanoindentation , 2006 .

[10]  Y. Milman,et al.  The anomalous behavior of Al-Cu-Fe quasicrystal during nanoindentation , 2001 .

[11]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[12]  W. Sekkal,et al.  Pressure effect on phonon modes in gallium nitride : a molecular dynamics study , 2001 .

[13]  E. Rybacki,et al.  Glide systems of hematite single crystals in deformation experiments , 2008 .

[14]  Didier Chicot,et al.  Strain gradient plasticity to study hardness behavior of magnetite (Fe_3O_4) under multicyclic indentation , 2009 .

[15]  Masahiro Seo,et al.  Nano-mechano-electrochemistry of passive metal surfaces , 2001 .

[16]  Taro Takahashi,et al.  Isothermal compression of magnetite to 320 KB , 1974 .

[17]  G. Samsonov,et al.  The Oxide Handbook , 1973 .

[18]  T. Homma,et al.  An X-ray Study of Strain Generation Behavior of a Steel-scale System during High Temperature Oxidation in Air , 1984 .

[19]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[20]  Julian D. Gale,et al.  Empirical potential derivation for ionic materials , 1996 .

[21]  T. Sritharan,et al.  Cyclic loading as an extended nanoindentation technique , 2006 .

[22]  A. C. Fischer-Cripps,et al.  Critical review of analysis and interpretation of nanoindentation test data , 2006 .

[23]  Minoru Asada,et al.  Determination of Young's Modulus and Poisson Ratio of Lump Ores , 1983 .

[24]  C. Catlow,et al.  Potential models for ionic oxides , 1985 .

[25]  K. Komvopoulos,et al.  Dynamic analysis of single and cyclic indentation of an elastic–plastic multi-layered medium by a rigid fractal surface , 2006 .

[26]  G. Quinn,et al.  Journal of Research of the National Institute of Standards and Technology , 2002 .

[27]  K. J. Gallagher,et al.  Mechanism of Oxidation of Magnetite to γ-Fe2O3 , 1968, Nature.

[28]  D. Faria,et al.  Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? , 2007 .

[29]  H. McSween,et al.  Magnetite whiskers and platelets in the ALH84001 Martian meteorite: evidence of vapor phase growth. , 1996, Geochimica et cosmochimica acta.

[30]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[32]  S. Schmauder,et al.  Nanoindentation study of the superlattice hardening effect at TiC(110)/NbC(110) interfaces , 2005 .

[33]  P. Nagy,et al.  Photoplasticity of As2Se3 films investigated with combined nanoindentation and AFM methods , 2007 .

[34]  L. Gerward,et al.  High-pressure studies of magnetite and magnesioferrite using synchrotron radiation , 1995 .

[35]  W. Sekkal,et al.  Pressure-induced softening of shear modes in wurtzite ZnO: A theoretical study , 2002 .

[36]  Zenon Mróz,et al.  Identification of material parameters by means of compliance moduli in spherical indentation test , 2004 .

[37]  Yury Gogotsi,et al.  Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors , 2000 .

[38]  E. Blank,et al.  Role of plasticity on indentation behavior: Relations between surface and subsurface responses , 2006 .

[39]  Zenon Mróz,et al.  Identification of yield stress and plastic hardening parameters from a spherical indentation test , 2007 .

[40]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[41]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[42]  U. Colombo,et al.  Mechanism of Low Temperature Oxidation of Magnetites , 1968, Nature.

[43]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[44]  B. Wood,et al.  The role of clinopyroxene in generating U-series disequilibrium during mantle melting , 1999 .

[45]  A. Soom,et al.  Interpretation of instrumented hardness measurements on stainless steel with different surface preparations , 2007 .

[46]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[47]  Ali Zaoui,et al.  Influence of visco-elasto-plastic properties of magnetite on the elastic modulus: Multicyclic indentation and theoretical studies , 2010 .

[48]  S. Mørup,et al.  Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals. , 1998 .

[49]  D. Chicot Hardness length-scale factor to model nano- and micro-indentation size effects , 2009 .

[50]  D. Parks,et al.  Non-linear finite element constitutive modeling of mechanical properties of hard and superhard materials studied by indentation , 2006 .

[51]  S. Jacobsen,et al.  High-pressure elasticity of a natural magnetite crystal , 2004 .

[52]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .