A novel compressive sensing method based on SVD sparse random measurement matrix in wireless sensor network

Purpose The performance of the measurement matrix directly affects the quality of reconstruction of compressive sensing signal, and it is also the key to solve practical problems. In order to solve data collection problem of wireless sensor network (WSN), the authors design a kind of optimization of sparse matrix. The paper aims to discuss these issues. Design/methodology/approach Based on the sparse random matrix, it optimizes the seed vector, which regards elements in the diagonal matrix of Hadamard matrix after passing singular value decomposition (SVD). Compared with the Toeplitz matrix, it requires less number of independent random variables and the matrix information is more concentrated. Findings The performance of reconstruction is better than that of Gaussian random matrix. The authors also apply this matrix to the data collection scheme in WSN. The result shows that it costs less energy and reduces the collection frequency of nodes compared with general method. Originality/value The authors design a kind of optimization of sparse matrix. Based on the sparse random matrix, it optimizes the seed vector, which regards elements in the diagonal matrix of Hadamard matrix after passing SVD. Compared with the Toeplitz matrix, it requires less number of independent random variables and the matrix information is more concentrated.

[1]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[4]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[5]  Stephen J. Wright,et al.  Toeplitz-Structured Compressed Sensing Matrices , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[6]  Peng Zhang,et al.  Nonlinear Dimensionality Reduction by Locally Linear Inlaying , 2009, IEEE Transactions on Neural Networks.

[7]  Holger Rauhut,et al.  Circulant and Toeplitz matrices in compressed sensing , 2009, ArXiv.

[8]  Shaohai Hu,et al.  Blocked Polynomial Deterministic Matrix for Compressed Sensing , 2010, 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

[9]  Shuhong Jiao,et al.  Compressed sensing and reconstruction with Semi-Hadamard matrices , 2010, 2010 2nd International Conference on Signal Processing Systems.

[10]  Hong Sun,et al.  Toeplitz-structured Chaotic Sensing Matrix for Compressive Sensing , 2010, 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010).

[11]  De-gan Zhang A new approach and system for attentive mobile learning based on seamless migration , 2010, Applied Intelligence.

[12]  A. Robert Calderbank,et al.  Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property , 2009, IEEE Journal of Selected Topics in Signal Processing.

[13]  Yingyuan Xiao,et al.  Efficient Distributed Skyline Queries for Mobile Applications , 2010, Journal of Computer Science and Technology.

[14]  Miki Haseyama,et al.  The simplest measurement matrix for compressed sensing of natural images , 2010, 2010 IEEE International Conference on Image Processing.

[15]  Robert D. Nowak,et al.  Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.

[16]  Dawei Song,et al.  Beyond Redundancies: A Metric-Invariant Method for Unsupervised Feature Selection , 2010, IEEE Transactions on Knowledge and Data Engineering.

[17]  Xiao-dan Zhang,et al.  Design and implementation of embedded un-interruptible power supply system (EUPSS) for web-based mobile application , 2012, Enterp. Inf. Syst..

[18]  Xuejing Kang,et al.  A novel image de-noising method based on spherical coordinates system , 2012, EURASIP J. Adv. Signal Process..

[19]  De-gan Zhang,et al.  A new medium access control protocol based on perceived data reliability and spatial correlation in wireless sensor network , 2012, Comput. Electr. Eng..

[20]  Wenbo Dai,et al.  A new constructing approach for a weighted topology of wireless sensor networks based on local-world theory for the Internet of Things (IOT) , 2012, Comput. Math. Appl..

[21]  Dawei Song,et al.  Mining pure high-order word associations via information geometry for information retrieval , 2013, TOIS.

[22]  De-gan Zhang,et al.  A kind of novel method of service-aware computing for uncertain mobile applications , 2013, Math. Comput. Model..

[23]  Guang Li,et al.  An Energy-Balanced Routing Method Based on Forward-Aware Factor for Wireless Sensor Networks , 2014, IEEE Transactions on Industrial Informatics.

[24]  Xiang Wang,et al.  A Novel Approach to Mapped Correlation of ID for RFID Anti-Collision , 2014, IEEE Transactions on Services Computing.

[25]  Yingyuan Xiao,et al.  Time-ordered collaborative filtering for news recommendation , 2015 .

[26]  Zhen Ma,et al.  New agent-based proactive migration method and system for Big Data Environment (BDE) , 2015 .

[27]  Xiang Wang,et al.  A novel multicast routing method with minimum transmission for WSN of cloud computing service , 2015, Soft Comput..

[28]  Xiang Wang,et al.  A new clustering routing method based on PECE for WSN , 2015, EURASIP Journal on Wireless Communications and Networking.