The two‐determinant coupled‐cluster method for electric properties of excited electronic states: The lowest 1B1 and 3B1 states of the water molecule

A recently proposed two‐determinant coupled‐cluster method for open‐shell singlet states is implemented to study the dipole moments, polarizabilities, and excitation energies for the lowest singlet and triplet B1 states of the water molecule. Selected electric properties for the B1 electronic states are determined and results compared with the previous complete active space self‐consistent field (CASSCF) study. The effect of dynamic correlation on the convergence of the dipole moments and polarizabilities is critically examined, including a comparison of the corresponding coupled‐cluster and exact full configuration interaction (CI) values in selected orbital spaces. As a result, an optimal description of the reference space as well as a balanced treatment of dynamic and nondynamic correlation on the single and double excitation level are found to be superior to an extensive treatment of only the nondynamic correlation effects. Vertical and adiabatic excitation energies for the B1 excited states are inves...

[1]  U. Kaldor,et al.  Degeneracy breaking in the Hilbert‐space coupled cluster method , 1993 .

[2]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. II: A model study on H8 , 1992 .

[3]  R. Bartlett,et al.  Coupled-cluster method for open-shell singlet states , 1992 .

[4]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. I: The single and double excitation model , 1991 .

[5]  Rodney J. Bartlett,et al.  The multireference coupled‐cluster method in Hilbert space: An incomplete model space application to the LiH molecule , 1991 .

[6]  J. Paldus,et al.  Cluster relations for multireference coupled‐cluster theories: A model study , 1991 .

[7]  R. Bartlett,et al.  A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations , 1991 .

[8]  G. Diercksen,et al.  Direct evaluation of one-electron properties in coupled cluster methods , 1990 .

[9]  Miroslav Urban,et al.  Molecular electric properties in electronic excited states: multipole moments and polarizabilities of H2O in the lowest1B1 and3B1 excited states , 1990 .

[10]  R. Bartlett,et al.  The general model space effective Hamiltonian in order‐for‐order expansion , 1989 .

[11]  Josef Paldus,et al.  Vectorizable approach to molecular CI problems using determinantal basis , 1989 .

[12]  Leszek Meissner,et al.  A coupled‐cluster method for quasidegenerate states , 1988 .

[13]  B. Roos,et al.  Ab initio quantum chemical study of the .pi.-electron spectrum of the cytosine molecule , 1988 .

[14]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[15]  L. J. Schaad,et al.  Use of molecular symmetry in coupled‐cluster theory , 1987 .

[16]  S. Sander,et al.  Fourier transform infrared spectroscopy of the NO3 nu-2 and nu-3 bands - Absolute line strength measurements , 1987 .

[17]  R. Bartlett,et al.  Coupled-cluster evaluation of geometrical derivatives of properties using nonrelaxed orbitals , 1987 .

[18]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[19]  R. Bartlett,et al.  Hyperpolarizabilities of the hydrogen fluoride molecule: A discrepancy between theory and experiment? , 1986 .

[20]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[21]  X. Chapuisat,et al.  An ab initio description of the excited states of the reaction O(3P, 1D) + H2 → OH(2Π, 2Σ+) + H. An attempt to describe several potential energy surfaces with constant accuracy , 1985 .

[22]  V. Staemmler,et al.  CEPA calculations of potential energy surfaces for open-shell systems.: IV. Photodissociation of H2O in the A1B1 state , 1985 .

[23]  U. Kaldor,et al.  General-model-space many-body perturbation theory: The (2s3p)/sup 1,3/P states in the Be isoelectronic sequence , 1984 .

[24]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[25]  S. Peyerimhoff,et al.  Bending potentials for H2O in the ground and the first six singlet excited states , 1984 .

[26]  G. Diercksen,et al.  Perturbation theory of the electron correlation effects for atomic and molecular properties. VII. Complete fourth‐order MBPT study of the dipole moment and dipole polarizability of H2O , 1983 .

[27]  A. J. Sadlej Correlation effects in externally perturbed many‐electron systems , 1983 .

[28]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[29]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[30]  G. Scoles Two-Body, Spherical, Atom-Atom, and Atom-Molecule Interaction Energies , 1980 .

[31]  N. Hush,et al.  Finite field method calculations. VI. Raman scatering activities, infrared absorption intensities and higher-order moments: SCF and CI calculations for the isotopic derivatives of H2O and SCF calculations for CH4 , 1980 .

[32]  A. Avoird,et al.  Ab initio calculation of the first order interaction energy in excited dimers. The H2O–H2O and H2O–Ne dimers , 1979 .

[33]  Jens Oddershede,et al.  Polarization Propagator Calculations , 1978 .

[34]  S. McGlynn,et al.  Molecular Rydberg states. VII. Water , 1977 .

[35]  E. Davidson,et al.  Configuration interaction calculations on the planar 1(π,π*) state of ethylene , 1977 .

[36]  Hans-Joachim Werner,et al.  PNO-CI and PNO-CEPA studies of electron correlation effects , 1976 .

[37]  A. Chutjian,et al.  Electron‐impact excitation of H2O and D2O at various scattering angles and impact energies in the energy‐loss range 4.2–12 eV , 1975 .

[38]  W. Goddard,et al.  Configuration interaction studies of the excited states of water , 1975 .

[39]  Bernard Pullman,et al.  The World of Quantum Chemistry , 1974 .

[40]  H. Brongersma,et al.  Triplet excitation of water and methanol by low-energy electron-impact spectroscopy , 1972 .

[41]  Weissberger Physical methods of chemistry , 1971 .

[42]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[43]  W. Klemperer,et al.  Electric Dipole Moment of the 1A2 Electronic State of Formaldehyde , 1966 .

[44]  A. S. Jursa,et al.  Absorption and Photoionization Cross Sections of H2O and H2S , 1964 .