Self-aligned, Extremely High Frequency Iii−v Metal-oxide- Semiconductor Field-effect Transistors on Rigid and Flexible Substrates

This paper reports the radio frequency (RF) performance of InAs nanomembrane transistors on both mechanically rigid and flexible substrates. We have employed a self-aligned device architecture by using a T-shaped gate structure to fabricate high performance InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) with channel lengths down to 75 nm. RF measurements reveal that the InAs devices made on a silicon substrate exhibit a cutoff frequency (f(t)) of ∼165 GHz, which is one of the best results achieved in III-V MOSFETs on silicon. Similarly, the devices fabricated on a bendable polyimide substrate provide a f(t) of ∼105 GHz, representing the best performance achieved for transistors fabricated directly on mechanically flexible substrates. The results demonstrate the potential of III-V-on-insulator platform for extremely high-frequency (EHF) electronics on both conventional silicon and flexible substrates.

[1]  Chongwu Zhou,et al.  Self-aligned fabrication of graphene RF transistors with T-shaped gate. , 2012, ACS nano.

[2]  Jing Guo,et al.  Nanoscale InGaSb heterostructure membranes on Si substrates for high hole mobility transistors. , 2012, Nano letters.

[3]  A. Javey,et al.  Ultrathin-Body High-Mobility InAsSb-on-Insulator Field-Effect Transistors , 2012, IEEE Electron Device Letters.

[4]  G. Dambrine,et al.  Flexible gigahertz transistors derived from solution-based single-layer graphene. , 2012, Nano letters.

[5]  N. Wichmann,et al.  Microwave performance of 100 nm-gate In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate , 2011 .

[6]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[7]  Elena Plis,et al.  Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness , 2011 .

[8]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[9]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[10]  Kang L. Wang,et al.  Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. , 2011, ACS nano.

[11]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[12]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[13]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[14]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[15]  Zhiyong Fan,et al.  Parallel Array Inas Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency Electronics , 2022 .

[16]  J. Carlin,et al.  Ultrahigh-Speed AlInN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with FT = 143 GHz , 2010 .

[17]  Dae-Hyun Kim,et al.  30-nm InAs PHEMTs With $f_{T} = \hbox{644}\ \hbox{GHz}$ and $f_{\max} = \hbox{681}\ \hbox{GHz}$ , 2010, IEEE Electron Device Letters.

[18]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[19]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[20]  E. Lind,et al.  Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz. , 2010, Nano letters.

[21]  C. Rutherglen,et al.  Nanotube electronics for radiofrequency applications. , 2009, Nature nanotechnology.

[22]  Henri Happy,et al.  80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes , 2009 .

[23]  C. Lieber,et al.  12 GHz $F_{\rm MAX}$ GaN/AlN/AlGaN Nanowire MISFET , 2009 .

[24]  A. Javey,et al.  Formation and characterization of NixInAs/InAs nanowire heterostructures by solid source reaction. , 2008, Nano letters.

[25]  Daehyun Kim,et al.  30-nm InAs Pseudomorphic HEMTs on an InP Substrate With a Current-Gain Cutoff Frequency of 628 GHz , 2008, IEEE Electron Device Letters.

[26]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[27]  Henri Happy,et al.  Gigahertz frequency flexible carbon nanotube transistors , 2007 .

[28]  Henri Happy,et al.  Intrinsic current gain cutoff frequency of 30GHz with carbon nanotube transistors , 2007 .

[29]  Zhenqiang Ma,et al.  Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate , 2006 .

[30]  E. Menard,et al.  High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates , 2006, IEEE Electron Device Letters.

[31]  John A. Rogers,et al.  Gigahertz operation in flexible transistors on plastic substrates , 2006 .

[32]  Zhen Yu,et al.  Carbon nanotube transistor operation at 2.6 Ghz , 2004 .

[33]  Karl Hess,et al.  High field transport in GaAs, InP and InAs , 1984 .

[34]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[35]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .