Local Existence for the FENE-Dumbbell Model of Polymeric Fluids

We study the well-posedness of a multi-scale model of polymeric fluids. The microscopic model is the kinetic theory of the finitely extensible nonlinear elastic (FENE) dumbbell model. The macroscopic model is the incompressible non-Newton fluids with polymer stress computed via the Kramers expression. The boundary condition of the FENE-type Fokker-Planck equation is proved to be unnecessary by the singularity on the boundary. Other main results are the local existence, uniqueness and regularity theorems for the FENE model in certain parameter range.

[1]  Benjamin Jourdain,et al.  MATHEMATICAL ANALYSIS OF A STOCHASTIC DIFFERENTIAL EQUATION ARISING IN THE MICRO-MACRO MODELLING OF POLYMERIC FLUIDS , 2003 .

[2]  Benjamin Jourdain,et al.  NUMERICAL ANALYSIS OF MICRO–MACRO SIMULATIONS OF POLYMERIC FLUID FLOWS: A SIMPLE CASE , 2002 .

[3]  Michael Renardy,et al.  An existence theorem for model equations resulting from kinetic theories of polymer solutions , 1991 .

[4]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[5]  H. C. Öttinger,et al.  CONNFFESSIT Approach for Solving a Two-Dimensional Viscoelastic Fluid Problem , 1995 .

[6]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[7]  Pingwen Zhang,et al.  Well-Posedness for the Dumbbell Model of Polymeric Fluids , 2004 .

[8]  Juan J. de Pablo,et al.  A method for multiscale simulation of flowing complex fluids , 2002 .

[9]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .

[10]  Cédric Chauvière,et al.  Simulation of complex viscoelastic flows using the Fokker–Planck equation: 3D FENE model , 2004 .

[11]  Weinan E,et al.  Convergence of a Stochastic Method for the Modeling of Polymeric Fluids , 2002 .

[12]  H. Risken Fokker-Planck Equation , 1984 .

[13]  Qiang Du,et al.  FENE Dumbbell Model and Its Several Linear and Nonlinear Closure Approximations , 2005, Multiscale Model. Simul..

[14]  Michael Renardy,et al.  Local existence of solutions of the Dirichlet initial-boundary value problem for incompressible hypoelastic materials , 1990 .

[15]  Benjamin Jourdain,et al.  Existence of solution for a micro–macro model of polymeric fluid: the FENE model , 2004 .

[16]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  P. Lions,et al.  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[19]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[20]  Cédric Chauvière,et al.  A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations , 2003 .

[21]  G. Fredrickson The theory of polymer dynamics , 1996 .

[22]  E. Süli,et al.  Existence of global weak solutions for some polymeric flow models , 2005 .

[23]  van den Bhaa Ben Brule,et al.  Simulation of viscoelastic flows using Brownian configuration fields , 1997 .

[24]  Pingwen Zhang,et al.  Local Existence for the Dumbbell Model of Polymeric Fluids , 2004 .

[25]  Martin Kröger,et al.  Simple models for complex nonequilibrium fluids , 2004 .

[26]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .