Evaluation of Toxicological Studies Using a Nonparametric Shirley-Type Trend Test for Comparing Several Dose Levels with a Control Group

The U.S. National Toxicology Program uses Shirley's test for the evaluation of endpoints in hematology, clinical chemistry, and urinalysis, which are assumed to be skewed distributed. Until now, no algorithm for Shirley's test for general unbalanced designs has been devised. A Shirley-type procedure is provided for estimating multiplicity-adjusted p-values or simultaneous confidence intervals for any continuous or discrete distributions and possible heterogeneous variances. Routine evaluation can be performed using the open-source R package nparcomp. The use of simultaneous confidence intervals for the relative effect is recommended, since these scale-invariant intervals allow one to claim the statistical significance of multiple endpoints as well as their biological relevance.

[1]  P Cloud,et al.  The oxygen cycle. , 1970, Scientific American.

[2]  N. Brown,et al.  Rebaudioside A: two-generation reproductive toxicity study in rats. , 2008, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[3]  Euijung Ryu,et al.  Simultaneous confidence intervals using ordinal effect measures for ordered categorical outcomes , 2009, Statistics in medicine.

[4]  E. J. G. Pitman,et al.  The “closest” estimates of statistical parameters , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Subhabrata Chakraborti,et al.  Nonparametric Statistical Inference , 2011, International Encyclopedia of Statistical Science.

[6]  F. Konietschke,et al.  Simultane Konfidenzintervalle für nichtparametrische relative Kontrasteffekte , 2009 .

[7]  Frank Bretz,et al.  Statistical Analysis of Monotone or Non-monotone Dose–Response Data from In Vitro Toxicological Assays , 2003, Alternatives to laboratory animals : ATLA.

[8]  Ludwig A. Hothorn,et al.  Robustness Study on Williams‐ and Shirley‐Procedure, with Application in Toxicology , 1989 .

[9]  Ronald H. Rnndles Nonparametric Statistical Inference (2nd ed.) , 1986 .

[10]  E. Brunner,et al.  Wilcoxon–Mann–Whitney test for stratified samples and Efron's paradox dice , 2007 .

[11]  C. Dunnett A Multiple Comparison Procedure for Comparing Several Treatments with a Control , 1955 .

[12]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[13]  Tests for a simple tree order restriction with application to dose–response studies , 2007 .

[14]  Frank Bretz An extension of the Williams trend test to general unbalanced linear models , 2006, Comput. Stat. Data Anal..

[15]  Ludwig A Hothorn,et al.  Multiple Contrast Tests in the Presence of Heteroscedasticity , 2008, Biometrical journal. Biometrische Zeitschrift.

[16]  D. A. Williams,et al.  A test for differences between treatment means when several dose levels are compared with a zero dose control. , 1971, Biometrics.

[17]  Stephen J. Ruberg,et al.  Contrasts for Identifying the Minimum Effective Dose , 1989 .

[18]  Christian P. Robert,et al.  Is Pitman Closeness a Reasonable Criterion , 1993 .

[19]  R. H. Browne,et al.  The t-Test p Value and Its Relationship to the Effect Size and P(X>Y) , 2010 .

[20]  E. Brunner,et al.  The Nonparametric Behrens‐Fisher Problem: Asymptotic Theory and a Small‐Sample Approximation , 2000 .

[21]  A. R. Jonckheere,et al.  A DISTRIBUTION-FREE k-SAMPLE TEST AGAINST ORDERED ALTERNATIVES , 1954 .

[22]  O. Davidov,et al.  Testing for order among K populations: theory and examples , 2009 .

[23]  L A Hothorn,et al.  Simultaneous Confidence Intervals for Ratios with Applications to the Comparison of Several Treatments with a Control , 2004, Methods of Information in Medicine.

[24]  R. Kay Statistical Principles for Clinical Trials , 1998, The Journal of international medical research.

[25]  Alan Agresti,et al.  Modeling and inference for an ordinal effect size measure , 2008, Statistics in medicine.

[26]  L. Hothorn,et al.  Proof of Hazard and Proof of Safety in Toxicological Studies Using Simultaneous Confidence Intervals for Differences and Ratios to Control , 2008, Journal of biopharmaceutical statistics.

[27]  G. Kissling,et al.  Induction of thyroid and liver tumors by chronic exposure to 2-methylimidazole in F344/N rats and B6C3F1 mice , 2008, Archives of Toxicology.

[28]  D. Dunson,et al.  Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor , 2008, Biometrics.

[29]  L. Hothorn,et al.  ‘A powerful alternative to Williams’ test with application to toxicological dose-response relationships of normally distributed data , 2000, Environmental and Ecological Statistics.

[30]  Williams Da,et al.  The comparison of several dose levels with a zero dose control. , 1972 .

[31]  O. J. Dunn Multiple Comparisons Using Rank Sums , 1964 .

[32]  S. Auerbach,et al.  A comparative 90-day toxicity study of allyl acetate, allyl alcohol and acrolein. , 2008, Toxicology.

[33]  Williams Da,et al.  A test for differences between treatment means when several dose levels are compared with a zero dose control. , 1971 .

[34]  Constantin T Yiannoutsos,et al.  A comparison of tests for restricted orderings in the three‐class case , 2009, Statistics in medicine.

[35]  Williams Da,et al.  A note on Shirley's nonparametric test for comparing several dose levels with a zero-dose control , 1986 .

[36]  Show-Li Jan,et al.  Nonparametric Equivalents of Contrasts for Identifying the Minimum Effective Dose , 2004, Comput. Stat..

[37]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[38]  E Shirley,et al.  A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. , 1977, Biometrics.

[39]  G. Hard,et al.  Re-evaluation of the kidney tumors and renal histopathology occurring in a 2-year rat carcinogenicity bioassay of quercetin. , 2007, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.