Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat

AbstractThe operational VIIRS cloud-base height (CBH) product from the Suomi–National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simultaneous observations of the same locations on Earth for a ~4.5-h period every 2–3 days. The methodology by which VIIRS and CloudSat observations are spatially and temporally matched is outlined. Based on four 1-month evaluation periods representing each season from June 2014 to April 2015, statistics related to the VIIRS CBH retrieval performance have been collected. Results indicate that when compared against CloudSat, the VIIRS CBH retrieval does not meet the error specifications set by the Joint Polar Satellite System (JPSS) program, with a root-mean-square error (RMSE) of 3.7 km for all clouds globally. More than half of all matching VIIRS pixels and CloudSat profiles have CBH errors exceeding the 2...

[1]  Harry Cikanek Joint Polar Satellite System: The United States Next Generation Civilian Polar Orbiting Environmental Satellite System (Invited Presentation) , 2016 .

[2]  Steven D. Miller,et al.  Rainfall retrieval over the ocean with spaceborne W‐band radar , 2009 .

[3]  Donald W. Hillger,et al.  First-Light Imagery from Suomi NPP VIIRS , 2013 .

[4]  Steven D. Miller,et al.  Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data , 2017 .

[5]  Xi Shao,et al.  Suomi NPP VIIRS sensor data record verification, validation, and long‐term performance monitoring , 2013 .

[6]  V. Derr,et al.  Remote sensing of the lower atmosphere , 1971 .

[7]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[8]  A. Fraser,et al.  An Assessment of Numerical Weather Prediction-Derived Low-Cloud-Base Height Forecasts , 2015 .

[9]  Donald L. Reinke,et al.  Cloud-Base Height Estimates Using a Combination of Meteorological Satellite Imagery and Surface Reports , 2000 .

[10]  Keith D. Hutchison,et al.  Cloud base heights retrieved during night‐time conditions with MODIS data , 2006 .

[11]  Gerald G. Mace,et al.  The CloudSat radar‐lidar geometrical profile product (RL‐GeoProf): Updates, improvements, and selected results , 2014 .

[12]  M. Baker,et al.  Cloud Microphysics and Climate , 1997 .

[13]  Curtis J. Seaman,et al.  Comparisons and analyses of aircraft and satellite observations for wintertime mixed‐phase clouds , 2011 .

[14]  P.,et al.  ESTIMATION OF LOW CLOUD BASE HEIGHTS AT NIGHT FROM SATELLITE INFRARED AND SURFACE TEMPERATURE DATA , 2011 .

[15]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[16]  Robert E. Wolfe,et al.  Suomi NPP VIIRS prelaunch and on‐orbit geometric calibration and characterization , 2013 .

[17]  Andrew J. Heymsfield,et al.  Extinction‐ice water content‐effective radius algorithms for CALIPSO , 2005 .

[18]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[19]  Eric C. Bruning,et al.  Environmental controls on storm intensity and charge structure in multiple regions of the continental United States , 2015 .

[20]  Howard W. Barker,et al.  Satellite‐based estimation of cloud‐base heights using constrained spectral radiance matching , 2016 .

[21]  W. Paul Menzel,et al.  INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R , 2005 .

[22]  James R. Cowie,et al.  DATA FUSION ENABLES BETTER RECOGNITION OF CEILING AND VISIBILITY HAZARDS IN AVIATION , 2015 .

[23]  J. Fritsch,et al.  The Impact of High-Frequency Surface Weather Observations on Short-Term Probabilistic Forecasts of Ceiling and Visibility , 2004 .

[24]  Mona Witkowski,et al.  CloudSat Anomaly Recovery and Operational Lessons Learned , 2012 .

[25]  K. Liou,et al.  Remote Sounding of Multilayer Cirrus Cloud Systems Using AVHRR Data Collected during FIRE-II-IFO , 1998 .

[26]  P. C. Pandey,et al.  Inference of cloud temperature and thickness by microwave radiometry from space , 1983 .

[27]  Yoshihide Takano,et al.  Remote sensing of cirrus cloud optical thickness and effective particle size for the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite: sensitivity to instrument noise and uncertainties in environmental parameters. , 2003, Applied optics.

[28]  R. Lawson,et al.  Improvement in Determination of Ice Water Content from Two-Dimensional Particle Imagery. Part II: Applications to Collected Data , 2006 .

[29]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Michael Hadjimichael,et al.  Remote cloud ceiling assessment using data-mining methods , 2004 .

[31]  T. T. Wilheit,et al.  Water vapour profile retrievals from SSM/T-2 data constrained by infrared-based cloud parameters , 1997 .

[32]  D. Rosenfeld,et al.  Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager , 2014 .

[33]  Jörg Bendix,et al.  Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study , 2005 .

[34]  Graeme L. Stephens,et al.  Retrieval of ice cloud microphysical parameters using the CloudSat millimeter‐wave radar and temperature , 2009 .

[35]  David B. Johnson The Influence of Cloud-Base Temperature and Pressure on Droplet Concentration , 1980 .

[36]  Steven D. Miller,et al.  The expected performance of cloud optical and microphysical properties derived from Suomi NPP VIIRS day/night band lunar reflectance , 2013 .

[37]  W. Eberhard,et al.  Cloud signals from lidar and rotating beam ceilometer compared with pilot ceiling , 1986 .

[39]  K. Hutchison,et al.  The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA's EOS Aqua mission , 2002 .

[40]  John P. Oakley,et al.  The Fog Remote Sensing and Modeling Field Project , 2009 .

[41]  Vladimir V. Rozanov,et al.  Cloud bottom altitude determination from a satellite , 2005, IEEE Geoscience and Remote Sensing Letters.

[42]  Steven D. Miller,et al.  Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery Environmental Data Record (EDR) user's guide , 2015 .

[43]  R. Marchand,et al.  Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-GHz Cloud Radar , 2008 .

[44]  E. Clothiaux,et al.  Cloud Droplet Size Distributions in Low-Level Stratiform Clouds , 2000 .

[45]  A. Slingo,et al.  The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments , 1988 .

[46]  Steven D. Miller,et al.  Estimating Three-Dimensional Cloud Structure via Statistically Blended Satellite Observations , 2014 .

[47]  Bryan A. Baum,et al.  Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES‐R/ABI , 2010 .

[48]  Gsfc Jpss Cmo Joint Polar Satellite System (JPSS) VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD) , 2011 .